Not Repairing An Old Tape Recorder

When you think of a tape recorder, you might think of a cassette tape. However, [Michael Simpson] has an old Star-Lite small reel-to-reel tape machine. It isn’t a repair so much as a rework to make it work better. These cheap machines were never the best, although a $19 tape player back then was a luxury.

Part of the problem is that the design of the tape player wasn’t all that good to begin with. The motor runs off two C cells in parallel. When these were new in the 1960s, that would have meant conventional carbon-zinc batteries, so the voltage would have varied wildly. That didn’t matter, though, because the drive was directly to the tape reel, so the speed also varied based on how much tape was left on the reel.

The amplifier has four transistors. [Michael] decided to replace the capacitors on the unit. He noticed, too, that the volume control is in line with the microphone when recording, so even though the recording was supposedly in need of repair, it turned out to be simply a case of the volume control being turned down. Pretty impressive for a six-decade-old piece of consumer electronics.

The capacitor change-out was simple enough. Some cleaning and lubing was also in order. Did it help? You’ll have to listen and decide for yourself.

So, no real repair was in the works, but it is an interesting look back at an iconic piece of consumer tech. Tape recorders like this were an early form of social media. No kidding. If you’d rather not buy a tape recorder, you could roll your own.

Continue reading “Not Repairing An Old Tape Recorder”

Record Changer Spins Round And Round

There was a time when all the cool kids had a 45 RPM record player. [RF Burns] picked up a 1950s-era player from  RCA. However, it needed a lot of work. The good news? We get to see the teardown and the result in a two-part video series, which you can see below. If you are looking for the schematic, you’ll have to wait for the second video.

These were made to be cheap, so there were many parts that needed replacement or, at least TLC. The automation of the record changer was all done with an eccentric wheel, which is satisfyingly low-tech. We were surprised that it still seemed to work after everything was cleaned up.

Inside were two active tubes and a rectifier tube to amplify the signal from the needle. A coat of paint made it look great, and a polarized power cord made it safer.

There was also an unamplified version of the player you can see at the end of the second video. All the same things except for the tube amplifier, of course.

If you are too young to have fond memories of 45s, here’s a primer on how records work. The record player we really want is mobile.

Laptop Brick Is Brought Back From The Brink

We’ve all been there. [Kasyan TV] had a universal adapter for a used laptop, and though it worked for a long time, it finally failed. Can it be fixed? Of course, it can, but it is up to you if it is worth it or not. You can find [Kasyan’s] teardown and repair in the video below.

Inside the unit, there were a surprising number of components crammed into a small area. The brick also had power factor correction. The first step, of course, was to map out the actual circuit topology.

Continue reading “Laptop Brick Is Brought Back From The Brink”

The Switch 2 Pro Controller: Prepare For Glue And Fragile Parts

The Switch 2 Pro controller’s battery is technically removable, if you can get to it. (Credit: VK’s Channel, YouTube)

For those of us who have worked on SNES and GameCube controllers, we know that these are pretty simple to get into and maintain. However, in the trend of making modern game controllers more complex and less maintainable, Nintendo’s new Switch 2 Pro controller is giving modern Xbox and PlayStation controllers a run for their money in terms of repair complexity. As shown in a teardown by [VK] on YouTube (starting at nine minutes in), the first step is a disappointing removal of the glued-on front plate. After that you are dealing with thin plastic, the typical flimsy ribbon cables and a lot of screws.

The main controller IC on the primary PCB is an ARM-based MediaTek MT3689BCA Bluetooth SoC, which is also used in the Switch 2’s Joy-Cons. The 3.87 V, 1070 mAh Li-ion battery is connected to the PCB with a connector, but getting to it during a battery replacement might be a bit of a chore.

Continue reading “The Switch 2 Pro Controller: Prepare For Glue And Fragile Parts”

Repairing Vintage Sony Luggable Calculators

You might wonder why you’d repair a calculator when you can pick up a new one for a buck. [Tech Tangents] though has some old Sony calculators that used Nixie tubes, including one from the 1960s. Two of his recent finds of Sony SOBAX calculators need repair, and we think you’ll agree that restoring these historical calculators is well worth the effort. Does your calculator have a carrying handle? We didn’t think so. Check out the video below to see what that looks like.

The devices don’t even use modern ICs. Inside, there are modules of discrete parts encapsulated in epoxy. There isn’t even RAM inside, but there is a delay line memory, although it is marked “unrepairable.”

There is some interesting history about this line of calculators, and the video covers that. Apparently, the whole line of early calculators grew out of an engineer’s personal project to use transistors that were scrapped because they didn’t meet the specifications for whatever application that used them.

The handle isn’t just cosmetic. You could get an external battery pack if you really wanted a very heavy — about 14 pounds (6.3 kilograms) — and large portable calculator. We are sure the $1,000 retail price tag didn’t include a battery.

These machines are beautiful, and it is fun to see the construction of these old devices. You might think our favorite calculator is based on Star Trek. As much as we do like that, we still think the HP-41C might be the best calculator ever made, even in emulation.

Continue reading “Repairing Vintage Sony Luggable Calculators”

Nintendo Switch 2 Teardown, Let’s A-Go!

A new console challenger has appeared, and it goes by the name Nintendo Switch 2. The company’s latest iteration of the home console portable hybrid initially showed promise by featuring a large 1080p display, though very little official footage of the handheld existed prior to the device’s global release last week. However, thanks to a teardown video from [TronicsFix], we’ve got a little more insight into the hardware.

The technical specifications of this new console have been speculated on for the last handful of years. We now know NVIDIA is again providing the main silicon in the form of a custom 8x ARM Cortex A78C processor. Keeping the system powered is a 5220 mAh lithium ion battery that according to [TronicsFix] is held in with some seriously strong adhesive.

On the plus side for repairability, the onboard microphone and headphone jack are each attached by their own ribbon cable to the motherboard. The magnetic controller interfaces are also modular in design as they may one day prove to be a point of failure from repeated detachment. Speaking of which, [TronicsFix] also took apart the new version of the Joy-Con controller that ships with the system.

Arguably the biggest pain point for owners of the original Nintendo Switch was the reliability of the analog sticks on the diminutive controllers. There were widespread reports of “stick drift” that caused players to lose control as onscreen avatars would lazily move in one direction without player input. For the Switch 2, the Joy-Con controllers feature roughly the same number of dome switch buttons as well as haptic feedback motors. The analog sticks are larger in size on the outside, but feature the same general wiper/resistor design of the original. Many will cry foul of the continued use of conventional analog stick design in favor of hall effect sensors, but only time will tell if the Nintendo Switch 2 will repeat history.

Continue reading “Nintendo Switch 2 Teardown, Let’s A-Go!”

Soviet Calculator Teardown Reveals Similarities And Differences

Tearing down hardware from different parts of the world can be revealing, showing unique parts, techniques, and tricks employed by engineers living in a very different world from our own. To that end, [msylvain59] has been kind enough to give us a look inside the Elektronika MK-26—a calculator built in the former Soviet Union.

There’s lots of interesting stuff to see from the get-go. The oddball button pad is covered in Cyrillic symbols, quite alien to those of us more accustomed to the Latin character set. It’s also constructed somewhat unlike more familiar models from Western-aligned companies like Casio or Commodore. It also rattles when shaken, which doesn’t inspire confidence. Inside, it’s got old-school brown PCBs without the usual green solder mask, a chunky IC in a weird package, and display is via a power-hungry VFD.

It doesn’t look so totally alien inside; much of the construction is pretty typical of the mid-1970s, wherever you went around the world. The most striking differences are more in the graphics and visual design than anything else.

Ultimately, there are reasons why manufacturers around the world tend to converge on similar techniques. Generally, it’s because it’s more economical or easier to do things a certain way. And yet, we still see regional variances because conditions, technologies, and parts availability varies around the world. This teardown highlights that quite clearly.

If you’re just getting a taste for Soviet hardware teardowns, you’ll love this video diving inside a real Soyuz clock.

Continue reading “Soviet Calculator Teardown Reveals Similarities And Differences”