A Look Inside A Modern Mixed Signal Oscilloscope

High-speed bench equipment has become so much more affordable in the last decade that naturally one wonders what has made that possible. A great source of answers is a teardown by users like [kerry wong] who are kind enough to take apart their MSO2304X 300MHz osilloscope for our viewing pleasure.

The posted teardown video shows the guts of the scope without enclosure, heatsinks and shields that reveal a handful of boards that execute the functions nicely. The motherboard uses the Xilinx KINTEX-7 FPGA that is expected to run core processes such as signal processing as well as managing the sample storage on the paired DDR3 memory.

The analog front-end here is a bit of a surprise as it sports TI’s ADC08D1000 ADCs that are capable of 1.3 GSPS but the scope is advertised to be capable of more. The inferred design is that all four ADCs are being operated in an interleaved symphony to achieve 5 GSPS. Testing confirms that each input uses two ADCs at a time and when two or more channels are employed, the reconstruction quality drops.

Continue reading “A Look Inside A Modern Mixed Signal Oscilloscope”

Investigating USB-to-Ethernet Dongles With “Malware” Claims

Recently a video surfaced from someone claiming that certain USB-to-Ethernet dongles contained ‘malware’ among other big claims. Basically these dongles were said to be designed by China (and Russia) to spy on users and so on, but how much of this is actually grounded in reality? When [lcamtuf] dove into the topic, what he found was not so much a smoking gun, but rather a curious relic from the era when drivers-on-CD were being phased out.

The item that the video went bananas about was namely an additional SPI Flash chip on the PCB alongside the USB 2.0 – Ethernet IC, with many conspiracy theories being floated as to what it would be used for. After some digging, [lcamtuf] found that the IC used in these dongles (SR9900) is by a company called CoreChips Shenzhen, with a strong suggestions that it is a clone of the (2013-era) Realtek RTL8152B.

Both chips have an external SPI Flash option, which is used with the USB side to present a ‘virtual CD drive’ to the user when the dongle is plugged in. This was borne out with the SR9900 Windows system mass production tool that [lcamtuf] obtained a copy of. Included with the flashing tool is a 168 kB ISO image (containing the SR9900 driver package) which happily fits on the 512 kB Flash chip.

Although it’s always possible for chips and firmware to contain backdoors and malware, in this particular case it would appear to be that it’s merely a cruel reminder that 2013 is now already vanishing into the realm of ‘retro computing’ as us old fogies cling to our driver installation floppies and CDs.

Stacy’s Computer Has Got It Going On

According to [ClassicHasClass], the best way to open an Atari Stacy is to not open an Atari Stacy. Apparently, these old computers were not pleasant to work on. The cables were not keyed and were prone to short against things. Screws easily strip out plastic holes. Of course, there wouldn’t be a story if there wasn’t a teardown and an upgrade that you can check out in the post.

The Stacy was one of Atari’s earliest portable systems and the first ST portable (that is, STacy). There’s a backlit LCD, a keyboard and trackball, and the usual ports. You could make do with a single floppy or spring for a second floppy or an internal SCSI hard drive. The 8 MHz 68000-based machine would set you back north of $2,300 back in 1989.

The original plan was to run the thing on C-cell batteries, but that would give you about 15 minutes of operation. They finally decided it was a luggable — you’d have to plug it into the wall. The battery compartment was there, but empty and glued shut.

Apparently, there were about 35,000 of these made, but they seem somewhat rare. But we do like a rare retrocomputer. Or even some that aren’t so rare.

close up hands holding lighting pcb

Circuit Secrets: Exploring A $5 Emergency Light

Who would’ve thought a cheap AliExpress emergency light could be packed with such crafty design choices? Found for about $5, this unit uses simple components yet achieves surprisingly sophisticated behaviors. Its self-latching feature and decisive illumination shut-off are just the beginning. A detailed analysis by [BigCliveDotCom] reveals a smart circuit that defies its humble price.

The circuit operates via a capacitive dropper, a cost-effective way to power low-current devices. What stands out, though, is its self-latching behavior. During a power failure, transistors manage to keep the LEDs illuminated until the battery voltage drops below a precise threshold, avoiding the dreaded fade-to-black. Equally clever is the automatic shut-off when the voltage dips too low, sparing the battery from a full drain.

Modifications are possible, too. For regions with 220V+ mains, swapping the dropper capacitor with a 470nF one can reduce heat dissipation. Replacing the discharge resistor (220k) with a higher value improves longevity by running cooler. What remarkable reverse engineering marvels have you come across? Share it in the comments!  After all, it is fun to hack into consumer stuff. Even if it is just a software hack.

Continue reading “Circuit Secrets: Exploring A $5 Emergency Light”

20 GHz LNB Testing And Teardown

Many things have combined to make very high-frequency RF gear much more common, cheaper, and better performing. Case in point: [dereksgc] is tearing apart a 20 GHz low-noise block (LNB). An LNB is a downconverter, and this one is used for some Irish satellite TV services.

The scale of everything matters when your wavelength is only 15 mm. The PCB is small and neatly laid out. There are two waveguides printed on the board, each feeding essentially identical parts of the PCB. Printed filters use little patterns on the board that have particular inductance and capacitance — no need for any components. Try doing that at 2 MHz!

The LNB is a single-band unit, so it only needs to worry about the two polarizations. However, [dereksgc] shows that some have multiple bands, which makes everything more complex. He also mentions that this LNB doesn’t use a PLL, and he’d like to find a replacement at this frequency that is a bit more modern.

After the teardown, it is time to test the device to see how it works. If you want to experiment at this frequency, you need special techniques. For example, we’ve seen people try to push solderless breadboards this high (spoiler: it isn’t easy). Maybe that’s why many people settle for modifying existing LNBs like this one.

Continue reading “20 GHz LNB Testing And Teardown”

A Look Back At Google’s 2015 Chromecast

Google’s Chromecast was first released in 2013, with a more sophisticated follow-up in 2015, which saw itself joined by the Chromecast Audio dongle. The device went through an additional two hardware generations before the entire line of products was discontinued earlier this year in favor of Google TV.

Marvell's Armada 88DE3006 dual-core Cortex-A7 powers the second-generation ChromeCast. (Credit: Brian Dipert, EDN)
Marvell’s Armada 88DE3006 dual-core Cortex-A7 powers the second-generation Chromecast. (Credit: Brian Dipert, EDN)

In addition to collecting each generation of Chromecast, [Brian Dipert] over at EDN looked back on this second-generation dongle from 2015 while also digging into the guts of a well-used example that got picked up used.

While not having any of the fascinating legacy features of the 2nd-generation Ultra in his collection that came with the Stadia gaming controller, it defines basically everything that Chromecast dongles were about: a simple dongle with a HDMI & USB connector that you plugged into a display that you wanted to show streaming content on. The teardown is mostly similar to the 2015-era teardown by iFixit, who incidentally decided not to assign any repairability score, for obvious reasons.

Most interesting about this second-generation Chromecast is that the hardware supported Bluetooth, but that this wasn’t enabled until a few years later, presumably to fix the wonky new device setup procedure that would be replaced with a new procedure via the Google Home app.

While Google’s attention has moved on to newer devices, the Chromecast isn’t dead — the dongles in the wild still work, and the protocol is supported by Google TV and many ‘smart’ appliances including TVs and multimedia receivers.

Raspberry Pi 500 And The Case Of The Missing M.2 Slot

Raspberry Pi just dropped the new Raspberry Pi 500, which like its predecessor puts the similarly named SBC into a keyboard. In a detailed review and teardown video, [Jeff Geerling] goes over all the details, and what there is to like and not like about this new product.

The new Raspberry Pi 500 with the new Raspberry Pi Monitor. (Credit: Jeff Geerling)
The new Raspberry Pi 500 with the new Raspberry Pi Monitor. (Credit: Jeff Geerling)

Most of the changes relative to the RP400 are as expected, with the change to the same BCM2712 SoC as on the Raspberry Pi 5, while doubling the RAM to 8 GB and of course you get the soft power button. As [Jeff] discovers with the teardown, the odd thing is that the RP500 PCB has the footprints for an M.2 slot, as seen on the above image, but none of the components are populated.

Naturally, [Jeff] ordered up some parts off Digikey to populate these footprints, but without luck. After asking Raspberry Pi, he was told that these footprints as well as those for a PoE feature are there for ‘flexibility to reuse the PCB in other contexts’. Sadly, it seems that these unpopulated parts of the board will have to remain just that, with no M.2 NVMe slot option built-in. With the price bump to $90 from the RP400’s $70 you’ll have to do your own math on whether the better SoC and more RAM is worth it.

In addition to the RP500 itself, [Jeff] also looks at the newly launched Raspberry Pi Monitor, a 15.6″ IPS display for $100. This unit comes with built-in speakers and VESA mount, but as [Jeff] notes in his review, using this VESA mount also means that you’re blocking all the ports, so you have to take the monitor off said VESA mount if you want to plug in or out any cables.

Continue reading “Raspberry Pi 500 And The Case Of The Missing M.2 Slot”