Hackaday Prize Semifinalist: Big Data And Big Agriculture

For their entry to the Hackaday Prize, the team behind SentriFarm is solving a big problem for farmers in Australia. Down there, farms are big, and each paddock must be checked daily. This means hours of driving every day. Surely a bunch of sensors and some radio links would help, right?

This is the idea behind SentriFarm: a ground station that reads air temperature, atmospheric pressure, wind speed and direction, rain, light, UV and smoke, and relays that back to a central node. Yes, it’s basically a wireless weather station, but the sheer distance these sensors must transmit adds some interesting complexity.

The SentriFarm team is hoping to get about 10km out of their radio system, and they’re using a long-range, low power radio module to do it. This data is received by the ubiquitous radio towers found on Australian farms and sent to a database on the farm’s network. This data can be combined with data from the local weather service to get an accurate picture of exactly what’s happening in each paddock.

You can check out the SentriFarm project video below.

The 2015 Hackaday Prize is sponsored by:

Continue reading “Hackaday Prize Semifinalist: Big Data And Big Agriculture”

Hackaday Prize Semifinalist: Smart Medication Dispenser

The biggest problems with pharmaceuticals isn’t patents, industry reps, or the fact that advertisement to consumers is allowed; this only happens in the United States. No, the biggest problem with pills and medications is compliance, or making sure the people who are prescribed medication take their medication. For his Hackaday Prize entry, [Joe] is working on a solution. It’s a smart desktop medicine organizer, and you can think of it as a pill box with smarts.

The list of features of [Joe]’s organizer include automatic pill organization – each prescription is accessed independently of all the others. When it’s time to take a pill, the smart medication dispenser plops out a pill. You can check out the demo video [Joe] put together using M&M candies.

There are a few more features for the Smart Desktop Medicine Organizer, including connecting to pharmacy APIs to order refills, checking for drug interactions, and setting timers (or not) for different medications; meds that should be taken every day will be dispensed every day, but drugs taken as needed up to a maximum limit will be dispensed as needed.

It’s a very cool project, and you can check out [Joe]’s video for the project below.

The 2015 Hackaday Prize is sponsored by:

Continue reading “Hackaday Prize Semifinalist: Smart Medication Dispenser”

Hackaday Prize Semifinalist: Playing With PIDs

PID control loops are everywhere, found in flight controllers for drones and the temperature control code for 3D printers. How do you teach PID control loops? [Tim] has a great demonstration for this, and it’s also a semifinalist for the Hackaday Prize.

[Tim]’s Sab3t is an educational tool designed to illustrate how PID control loops work. It’s a robotic table on which a large ball bearing sits perfectly balanced. On this table is a resistive touch screen from a display providing feedback for the location of the ball bearing. By adjusting PID values, the ball bearing either sits stationary on the table or flails wildly around, depending on the values in the PID algorithm being used.

As a teaching tool, it’s great; with a python script displaying a log of the PID values and the position of the ball on the plate, anyone can easily visualize how oscillations happen, what a well-tuned control loop looks like, and have some fun moving the ball bearing around to different locations.

The 2015 Hackaday Prize is sponsored by:

Continue reading “Hackaday Prize Semifinalist: Playing With PIDs”

Hackaday Prize Semifinalist: Conserving Water And Eliminating Daydreaming

[mulcmu], we suppose, frequently wastes a lot of water while daydreaming in the shower. While daydreaming in the shower one day, we suppose again, he came up with the idea of keeping on task while in the shower. Thus was born the shower metronome, [mulcmu]’s entry for The Hackaday Prize.

The goal of the shower metronome is two-fold. First, it reduces the amount of water used in the shower. Secondly, it keeps the user on time for work. The shower metronome does this with a small audio beep provided by a small microcontroller attached to the shower frame or shower curtain.

The guts of the device are an MSP430 microcontroller, a few coin cell batteries, and a hall effect sensor that turns the device on, just like a magnetic door or window alarm. The microcontroller choice is perfect for the application; the MSP430 is extremely low power, and the device only draws 1uA in low power mode. This means the shower metronome will last a while when used only a few minutes a day.

The 2015 Hackaday Prize is sponsored by:

Hackaday Prize Semifinalist: Picking Up Litter With Robots

On beaches, in parks, and in [BDM]’s back yard, there’s a lot of liter everywhere. The normal solution to this problem is to hire someone or find some volunteers to pick up all this trash. We’re living in the future, though, and that means robots. For his Hackaday Prize entry, [BDM] is building a robot that picks up trash.

A robot that picks up litter is a very, very interesting problem. It can’t be controlled by a person, or else it would be more efficient to just get out there and kill your back picking up bottles. This means it must work autonomously, and that means identifying litter, picking it up, and disposing of it.

For the identification part of the problem, [BDM] is using computer vision that captures an RGB image and discriminates against natural objects. Right now the computer vision is far from perfect, but it does a very good job, all things considering.

The next biggest problem is picking the trash up and disposing of it. For this, [BDM] has repurposed a Power Wheels and attached a DIY robot arm. It’s not a very powerful arm, and a children’s toy probably isn’t the best platform, but it is the start of something very, very cool.

You can check out [BDM]’s video for the project below.

The 2015 Hackaday Prize is sponsored by:

Continue reading “Hackaday Prize Semifinalist: Picking Up Litter With Robots”

Hackaday Prize Semifinalist: A Low Cost, DIY Fuel Cell

Electronic cars and planes are the wave of the future, or so we’re told, but if you do the math on power densities, the future looks bleak. Outside of nuclear power, you can’t beat the power density of liquid hydrocarbons, and batteries are terrible stores of energy. How then do we tap the potential of high density fuels while still being environmentally friendly? With [Lloyd]’s project for The Hackaday Prize, a low cost hydrogen fuel cell.

Traditionally, fuel cells have required expensive platinum electrodes to turn hydrogen and oxygen into steam and electricity. Recent advances in nanotechnology mean these electrodes may be able to be produced at a very low cost.

For his experiments, [Lloyd] is using sulfonated para-aramids – Kevlar cloth, really – for the proton carrier of the fuel cell. The active layer is made from asphaltenes, a waste product from tar sand extraction. Unlike platinum, the materials that go into this fuel cell are relatively inexpensive.

[Lloyd]’s fuel cell can fit in the palm of his hand, and is predicted to output 20A at 18V. That’s doesn’t include the tanks for supplying hydrogen or any of the other system ephemera, but it is an incredible amount of energy in a small package.

You can check out [Lloyd]’s video for the Hackaday Prize below.

The 2015 Hackaday Prize is sponsored by:

Continue reading “Hackaday Prize Semifinalist: A Low Cost, DIY Fuel Cell”

Hackaday Prize Semifinalist: A Mobile Node

The future is the Internet of Things, or so we’re told, and with that comes the requirement for sensors attached to the Internet that also relay GPS and location data. [Camilo]’s MobileNodes do just that. He’s designed a single device that will listen to any sensor, upload that data to the Internet over GSM or GPRS, and push all that data to the cloud.

The MobileNode is a small circular (7cm) PCB with a standard ATMega32u4 microcontroller. Attached to this PCB are GSM/GPRS and GPS/GLONASS modules to receive GPS signals and relay all that data to the cloud. To this, just about any sensor can be added, including light sensors, PIR sensors, gas and temperature sensors, and just about anything else that can be measured electronically.

Of course the biggest problem with a bunch of sensors on an Internet of Things device is pulling the data from the Internet. For that, [Camilo] designed a web interface that shows sensor data directly on a Google Map. You can check out the project video below.

The 2015 Hackaday Prize is sponsored by:

Continue reading “Hackaday Prize Semifinalist: A Mobile Node”