Retrotechtacular: TVO

Hardware hackers come from a variety of backgrounds, but among us there remains a significant number whose taste for making things was forged through growing up in a farm environment. If that’s you then like me it’s probable that you’ll melt a little at the sight of an older tractor, and remember pretending to drive one like it at pre-school age, and then proudly driving it for real a few years later before you were smart enough to realise you’d been given the tedious job of repeatedly traversing a field at a slow speed in the blazing sun. For me those machines were Ford Majors and 5000s, Nuffields, the ubiquitous red Fergusons, and usually relegated to yard duty by the 1970s, the small grey Ferguson TE20s that are in many ways the ancestor of all modern tractors.

The Black Art Of Mixing Your Own Fuel

There was something odd about some of those grey Fergies in the 1970s, they didn’t run on diesel like their newer bretheren, nor did they run on petrol or gasoline like the family Austin. Instead they ran on an unexpected mixture of petrol and heating oil, which as far as a youthful me could figure out, was something of a black art to get right. I’d had my first encounter with Tractor Vapour Oil, or TVO, a curious interlude in the history of agricultural engineering. It brings together an obscure product of the petrochemical industry, a moment when diesel engine technology hadn’t quite caught up with the on-farm requirement, and a governmental lust for a lower-tax tractor fuel that couldn’t be illicitly used in a car.

TVO is a fuel with a low octane rating, where the octane rating is the resistance to ignition through compression alone. In chemical terms octane rating a product of how many volatile aromatic hydrocarbons are in the fuel, and to illustrate it your petrol/gasoline has an octane rating in the high 90s, diesel fuel has one close to zero, and TVO has a figure in the 50s. In practice this was achieved at the refinery by taking paraffin, or kerosene for Americans, a heavier fraction than petrol/gasoline, and adding some of those aromatic hydrocarbons to it. The result was a fuel on which a standard car engine wouldn’t run, but which would run on a specially low-compression engine with a normal spark ignition. This made it the perfect tax exempt fuel for farmers because it could only be used in tractors equipped with these engines, and thus in the years after WW2 a significant proportion of those Fergies and other tractors were equipped to run on it. Continue reading “Retrotechtacular: TVO”

Automated Drone Takes Care Of Weeds

Commercial industrial agriculture is responsible for providing food to the world’s population at an incredibly low cost, especially when compared to most of human history when most or a majority of people would have been involved in agriculture. Now it’s a tiny fraction of humans that need to grow food, while the rest can spend their time in cities and towns largely divorced from needing to produce their own food to survive. But industrial agriculture isn’t without its downsides. Providing inexpensive food to the masses often involves farming practices that are damaging to the environment, whether that’s spreading huge amounts of synthetic, non-renewable fertilizers or blanket spraying crops with pesticides and herbicides. [NathanBuildsDIY] is tackling the latter problem, using an automated drone system to systemically target weeds to reduce his herbicide use.

The specific issue that [NathanBuildsDIY] is faced with is an invasive blackberry that is taking over one of his fields. To take care of this issue, he set up a drone with a camera and image recognition software which can autonomously fly over the field thanks to Ardupilot and a LiDAR system, differentiate the blackberry weeds from other non-harmful plants, and give them a spray of herbicide. Since drones can’t fly indefinitely, he’s also build an automated landing pad complete with a battery swap and recharge station, which allows the drone to fly essentially until it is turned off and uses a minimum of herbicide in the process.

The entire setup, including drone and landing pad, was purchased for less than $2000 and largely open-source, which makes it accessible for even small-scale farmers. A depressing trend in farming is that the tools to make the work profitable are often only attainable for the largest, most corporate of farms. But a system like this is much more feasible for those working on a smaller scale and the automation easily frees up time that the farmer can use for other work. There are other ways of automating farm work besides using drones, though. Take a look at this open-source robotics platform that drives its way around the farm instead of flying.

Thanks to [PuceBaboon] for the tip!

Continue reading “Automated Drone Takes Care Of Weeds”

Will Electric Tractors Farm Your Food?

There are two professions used to driving single-seaters with hundreds of horsepower, one of which is very exclusive and the other of which can be found anywhere the ground is fertile enough to support agriculture. Formula One drivers operate fragile machines pushed to the edges of their performance envelope, while the tractor at the hands of a farmer is designed to reliably perform huge tasks on dodgy ground in all weathers. Today’s tractor is invariably a large machine powered by a diesel engine, and it’s the equal of all tasks on a modern farm. Against that backdrop then it’s interesting to read the Smithsonian magazine’s look at the emerging world of electric tractors. Will they replace diesel as the source of traction in the fields?

Farm-ng’s Amiga

The two firms they focus on first are Monarch Tractor, and Solectrac. Both manufacturers offer small machines of the type we’d be inclined to describe as an orchard tractor, and Monarch are offering an autonomous option as part of their package. They also feature Farm-ng, whose machine called amusingly the Amiga, is a much smaller affair which we are guessing would be super-useful on a very intensive operation such as market gardening. We’re especially pleased to see that the emerging small electric tractor industry is embracing right to repair, something the traditional manufacturers are famous for ignoring.

It’s obvious that none of these machines are going to revolutionize the world of large high-power tractors any time soon, as they are too small for the job and can’t offer the 24/7 operation required at busy times on a farm. But it’s obvious they would be very useful on a small farm, and in particular for those tractor applications where the machine is a platform which goes from place to place to aid static work, they could be better than their diesel equivalents.

It’s odd that over the years we’ve not covered any electric tractors before. Perhaps that is, until you search instead for agricultural robots.

Smoke Some Weeds: Lasers Could Make Herbicide Obsolete

We’ve all tangled with unwelcome plant life at one point or another. Whether crabgrass infested your lawn, or you were put on weeding duty in your grandfather’s rose patch, you’ll know they’re a pain to remove, and a pain to prevent. For farmers, just imagine the same problem, but scaled up to cover thousands of acres.

Dealing with weeds typically involves harsh chemicals or excessive manual labor. Lasers could prove to be a new tool in the fight against this scourge, however, as covered by the BBC.

Continue reading “Smoke Some Weeds: Lasers Could Make Herbicide Obsolete”

Agrivoltaics Is A Land Usage Hack For Maximum Productivity

Land tends to be a valuable thing. Outside of some weird projects in Dubai, by and large, they aren’t making any more of it. That means as we try to feed and power the ever-growing population of humanity, we need to think carefully about how we use the land we have.

The field of agrivoltaics concerns itself with the dual-use of land for both food production and power generation. It’s all about getting the most out of the the available land and available sunlight we have.

Continue reading “Agrivoltaics Is A Land Usage Hack For Maximum Productivity”

Open-Source Farming Robot Now Includes Simulations

Farming is a challenge under even the best of circumstances. Almost all conventional farmers use some combination of tillers, combines, seeders and plows to help get the difficult job done, but for those like [Taylor] who do not farm large industrial monocultures, more specialized tools are needed. While we’ve featured the Acorn open source farming robot before, it’s back now with new and improved features and a simulation mode to help rapidly improve the platform’s software.

The first of the two new physical features includes a fail-safe braking system. Since the robot uses electric geared hub motors for propulsion, the braking system consists of two normally closed relays which short the motor leads in emergency situations. This makes the motors see an extremely high load and stops them from turning. The robot also has been given advanced navigation facilities so that it can follow custom complex routes. And finally, [Taylor] created a simulation mode so that the robot’s entire software stack can be run in Docker and tested inside a simulation without using the actual robot.

For farmers who are looking to buck unsustainable modern agricultural practices while maintaining profitable farms, a platform like Acorn could be invaluable. With the ability to survey, seed, harvest, and even weed, it could perform every task of larger agricultural machinery. Of course, if you want to learn more about it, you can check out our earlier feature on this futuristic farming machine.

Better Farming Through Electricity

Chinese researchers are reporting that applying an electric field to pea plants increased yields. This process — known as electroculture — has been tested multiple times, but in each case there are irregularities in the scientific process, so there is still an opportunity for controlled research to produce meaningful data.

This recent research used two plots of peas planted from the same pods. The plants were tended identically except one plot was stimulated by an electric field. The yield on the stimulated plot was about 20% more than the control plot.

The actual paper is paywalled in the journal Nature Food, but the idea seems simple enough. If you search for the topic, you’ll find there have been other studies with similar findings. There are also anecdotal reports of electrical plant stimulation going back to 1746.

Continue reading “Better Farming Through Electricity”