Etching Your Own Boards Really, Really Fast

Sometimes the planets align and the Hackaday tip line gets two posts that are begging to be used together. Here’s two hacks to etch your own boards at home in just a few minutes.

Toner transfer PCBs on the quick

One way of putting an etch mask on a PCB is with the toner transfer method: print your circuit on a piece of inkjet photo paper using a laser printer, lay that circuit face down on a sheet of copper, and go at it with a clothes iron. This takes a heck of a lot of time and effort, but [Dustin] found another way. He used parchment paper instead of inkjet photo paper. Once the paper was on the board, he rolled it through a laminator. The results are awesome. It’s a very fast process as well – you don’t need to soak your board in water to get the photo paper off.

Etching that’s like wiping the copper away

[Royce] wrote in from the Milwaukee Makerspace to tell us about [Tom]’s etching process that is like wiping the copper off the board.  He used Muratic (Hydrochloric) acid and Hydrogen Peroxide with a sponge to wipe that copper away. The trick in this, we think, comes from the 30% H202 [Tom] picked up at a chemical supply company, but we’re pretty sure similar strengths can be purchased from beauty supply stores. Check out the video after the break to see [Tom] etch a 1 oz. board in just a few seconds.

Continue reading “Etching Your Own Boards Really, Really Fast”

Build A Stereo Microscope From Binoculars And A Camera Lens

Here’s an oldie but a goodie. [RunnerPack] stumbled upon an article from 2001 about building a stereo microscope from a pair of binoculars and a camera lens. With a ring light attached to the end of the camera lens, we couldn’t think of a better microscope for SMD work.

To mount the binoculars to the camera lens, [Giorgio Carboni] made a very nice adapter containing four prisms. These prisms are very carefully aligned and glued down with a little bit of epoxy. By using an 8×30 pair of binoculars and a 35-100 mm camera lens, [Giorgio] was able to get a magnification factor of 10-57x. With a macro lens this factor can be increased (a 28mm lens bumps it up to 71x, but a lot more light is needed).

The pedestal is just a few ground rods and ground steel rods, something that requires a bit of machining. Since 2001, though, a lot of tinkerers have 3D printers so it could be possible to build a more easily manufactured version of the focusing apparatus.

[RunnerPack] had a pair of binoculars and a camera lens handy and tried a mono version of this build. He says he was blown away, but unfortunately didn’t provide any pictures. If you decide to build this project, be sure to snap a few pics and send it in on the tip line.

A Papercraft Resistor Calculator From Adafruit

The Adafruit blog just posted a neat papercraft resistor calculator. If you haven’t yet learned the horribly offensive mnemonic for resistor color codes, now’s your chance to have a cheap and portable resistor value reference.

This papercraft resistor calculator is the latest in the family of Circuit Playground tools that include a fabulous electronic reference app we reviewed some months ago. Instead of an Android or iOS device, the papercraft resistor calculator runs on its own mechanical computer; a series of four printed disks and some paper fasteners.

If you’d like to print out your own resistor calculator, Adafruit put up the PDF on GitHub and posted the Illustrator file on Thingiverse for easy editing. It’s not the old-school cool of a slide rule, but we could easily see this resistor calculator being useful if you’re ever lucky enough to teach electronics to children. At least then you won’t have to share that offensive mnemonic.

Sand Casting Motorcycle Cases

Sand casting has been around since, well, since a really really long time ago. For thousands of years, people have been pouring molten metal into finely crafted sand casts, and there’s really no reason that someone can’t do the same thing in their garage or workshop today. This article covers the process of sand casting new case parts for antique Indian motorcycles.  In this instance, the parts were not only very difficult to find, the author also wanted to modify the design completely.

Though there are a few terms that pop up with which we’re unfamiliar, the process seems pretty straightforward. You build a model of what you want, you create the sand cast from the model, you fill the cast with molten metal. Done. In some cases, depending on the level of precision needed, you may need some machining done afterward. However, in many cases things don’t have to be quite so exact.

[via Matthew Van Arsdale]

Homebrew Solder Pot Is Too Dangerous Even For Us

[rue_mohr] is building a hexapod robot, and that meant he needed to tin a whole bunch of ribbon cables with solder. Using a soldering iron for this task would take far too long, so he built a homebrew solder pot to tin all those wires quickly. While [rue] was able to get solder on all those wires quickly, we need to question his method – he used a halogen light and reflector to melt all that solder.

The build began with a recycled halogen light fixture. After taking apart the entire assembly, [rue] reassembled it into something resembling a solder pot; a concave reflector and halogen light bulb sit perfectly flat on the table, ready to accept pieces of solder.

After throwing the switch and putting a few bits of solder in the reflector, the solder pot surprisingly worked. [rue] was able to quickly tin his ribbon cables, and the halogen bulb and reflector didn’t break yet.

This is one of the least safe solder pots we’ve ever seen – the bulb could easily explode, and melted solder could come pouring out of the reflector at any time. [rue] is aware of the safety implications and make sure to wear a pair of goggles. If it works though, we really can’t complain.

Check out the video of [rue]’s solder pot (with an awesome temperature indicator light right in the middle of a pool of solder) in action after the break.

Continue reading “Homebrew Solder Pot Is Too Dangerous Even For Us”

PiP-Boy 2000 Build Goes For Function Over Form

 

[Daniel] wrote in to tell us about his PIP-Boy 2000 prototype. While most PIP-Boy remakes we’ve seen tend to be focusing more on the aesthetic side, like a prop, [Daniel] is attempting to make a functional one. He has included a GPS sensor, RFID reader,  and radiation detector in his build but did choose to stick with the familiar PIP-Boy visual theme in the menus. He has a very long way to go if he wants it to do everything the PIP-Boy from Fallout did, but his list of semi-functional features is growing steadily.

Currently there are the basic functions of:

  • automapping and waypoint navigation
  • external PC interface
  • inventory status and item recognition (using RFID)
  • player experience (adds experience as you go to new locations)
  • ambient radiation
  • screensaver

Let us know when you get that sucker to stop time [Daniel]

Printing PCBs On A Junked Epson Printer

When it comes to making PCBs at home really quickly, there’s not much to improve upon with [Ryan]’s bodged up Epson printer that prints an etch mask directly on a piece of copper clad board.

Like most of the direct to copper PCB printer conversions we’ve covered ( 1, 2, 3 ), [Ryan]’s build relied on an Epson printer and Mis Pro yellow ink. The Mis Pro ink is one of the most etch-resistive substances that can be shot out of an inkjet printer, and Epson printer cartridges use a piezo pump that is perfect for squirting ink out on command.

After tearing the printer apart and lifting the print head a bit, [Ryan] needed a proper feed system to control where on the copper he was printing. He managed to make a board carrier out of a sheet of aluminum. By taping down the copper clad board, everything seems to work phenomenally.

After the break you can check out how fast [Ryan] can print out a fully etch-resisted PCB. It’s not improbable that he could produce a few dozen boards an hour; something our toner transfer PCB production method would kill for.

via makezine

Continue reading “Printing PCBs On A Junked Epson Printer”