Bringing Augmented Reality to the Workbench

[Ted Yapo] has big ideas for using Augmented Reality as a tool to enhance an electronics workbench. His concept uses a camera and projector system working together to detect objects on a workbench, and project information onto and around them. [Ted] envisions virtual displays from DMMs, oscilloscopes, logic analyzers, and other instruments projected onto a convenient place on the actual work area, removing the need to glance back and forth between tools and the instrument display. That’s only the beginning, however. A good camera and projector system could read barcodes on component bags to track inventory, guide manual PCB assembly by projecting which components go where, display reference data, and more.

An open-sourced, accessible machine vision system working in tandem with a projector would open a lot of doors. Fortunately [Ted] has prior experience in this area, having previously written the computer vision code for room-scale dynamic projection environments. That’s solid experience that he can apply to designing a workbench-scale system as his entry for The Hackaday Prize.

Invasion of the Tiny Magnetic PCB Vises

[Proto G] recently wrote in to share a very slick way of keeping tabs on all the tiny PCBs and devices that litter the modern electronics workbench. Rather than a big bulky PCB vise for each little board, he shows how to make tiny grippers with magnetic bases for only a couple bucks each. Combined with a sheet metal plate under an ESD mat, it allows him to securely position multiple PCBs all over his workspace.

The key to this hack is the little standoffs that are usually used to mount signs to walls. These already have a clamping action by virtue of their design, but the “grip” of each standoff is improved with the addition of a triangular piece of plastic and rubber o-ring.

With the gripping side of the equation sorted, small disc magnets are glued to the bottom of each standoff. With a suitable surface, the magnets are strong enough to stay upright even with a decently large PCB in the jaws.

An especially nice feature of using multiple small vises like this is that larger PCBs can be supported from a number of arbitrary points. It can be difficult to clamp unusually shaped or component-laden PCBs in traditional vises, and the ability to place them wherever you like looks like it would be a huge help.

We’ve recently covered some DIY 3D printed solutions for keeping little PCBs where you want them, but we have to say that this solution looks very compelling if you do a lot of work on small boards.

Continue reading “Invasion of the Tiny Magnetic PCB Vises”

A mobile electronics lab for all your projects

When [Nisker]’s son got a very, very loud and annoying toy, he did what any good maker parent would do: instead of removing the batteries, he sought a way to lower the volume instead. This, of course, meant cracking open the toy and going at the circuit board with a soldering iron. Not having a permanent electronics workbench meant [Nisker] needed to dig out his Weller from a bag full of tools. Surely there must be an easier way to be a tinkerer with a small workspace.

[Nisker]’s solution was to build a mobile electronics workbench. The resulting wooden box has more than enough space to hold a signal generator, power supply, soldering iron, multimeter, and a bunch of other tools required for making or modding electronics projects.

The case was designed in Google Sketchup and constructed out of 12mm plywood for the sides and 6mm ply for the shelves. All the pieces were cut out with a circular saw and pieced together with screws and glue.

Now [Nisker] has a very compact – 16.9 x 7.9 x 22 inches – electronics lab he can carry just about anywhere. Not a bad project if you’re limited by your current space, and classy enough to keep around once you finally set up a proper workshop.