An Introduction To Valve’s Tracking Hardware

[Alan Yates] brought a demo of Valve’s new VR tech that’s the basis of the HTC Vive system to Maker Faire this year. It’s exceptionally clever, and compared to existing VR headsets it’s probably one of the best headtracking solutions out there.

With VR headsets, the problem isn’t putting two displays in front of the user’s eyes. The problem is determining where the user is looking quickly and accurately. IMUs and image processing techniques can be used with varying degrees of success, but to do it right, it needs to be really fast and really cheap.

[Alan] and [Valve]’s ‘Lighthouse’ tracking unit does this by placing a dozen or so IR photodiodes on the headset itself. On the tracking base station, IR lasers scan in the X and Y axes. By scanning these IR lasers across the VR headset, the angle of the headset to the base station can be computed in just a few cycles of a microcontroller. For a bunch of one cent photodiodes, absolute angles and the orientation to a base station can be determined very easily, something that has some pretty incredible applications for everything from VR to robotics.

Remember all of the position tracking hacks that came out as a result of the Nintendo Wii using IR beacons and a tracking camera? This seems like an evolutionary leap forward but in the same realm and can’t wait to see people hacking on this tech!

Real-Virtual 3rd Person Skiing — Your Broken Bones Are The Video Game

Disappointed in the lack of proper VR games and the current technology, [Jonas Hjohlman] and some friends set out to make their own. They decided to go big or go home — and  built a device to let them ski in the third person.

We’ve seen this done as a proof of concept for walking around (and getting dizzy!) and even an attempt at third person driving which didn’t end well… We have to say, we’re pretty impressed at the Devil-may-care approach they take when trying to ski of all things — in the third person.

There’s not too much detail about the setup, but it looks like a standard pair of FPV goggles hooked up to their own wireless camera. A cameraman skier follows the player down the hill, and all the player sees is from behind.

Surprisingly, it goes a lot better than you think it would.

Continue reading “Real-Virtual 3rd Person Skiing — Your Broken Bones Are The Video Game”

DIY Hololens

DIY Hololens Uses Pepper’s Ghost In A Box!

Entirely too excited about Microsoft’s Hololens, the DIY community has leaped on the challenge to make some hardware before the real deal comes out. [Sean Hall] has an excellent 3D printed prototype that makes use of the Pepper’s Ghost illusion to create a “hologram” for this pair of unique VR goggles.

Similar to other DIY virtual reality goggles we’ve seen, [Sean] has 3D printed the enclosure — but instead of slapping the smart phone right in front of your eyes, it’s mounted above the goggles, reflecting off of a mirror and then a piece of transparent plexi-glass, which produces a hologram like effect thanks to the concept of Pepper’s Ghost illusion.

The problem with any of these reflection-based-holograms is they aren’t always that easy to see, so [Sean] is planning to try out some 1-way reflective car tint to get a more visible reflection while still being able to see through the image. He also plans to add gaze tracking with some open-source software called Project Haytham. It’s a depth sensor using a Kinect, head tracking using a Playstation Move and maybe even a leap motion controller for virtual object manipulation.

Check out the current state of this hack in the clip after the break.

Continue reading “DIY Hololens Uses Pepper’s Ghost In A Box!”

Putting Oculus Rift On A Robot

Many of the early applications for the much anticipated Oculus Rift VR rig have been in gaming. But it’s interesting to see some more useful applications besides gaming, before it’s commercial release sometime this year. [JoLau] at the Institute i4Ds of FHNW School of Engineering wanted to go a step beyond rendering virtual worlds. So he built the Intuitive Rift Explorer a.k.a IRE. The IRE is a moving reality system consisting of a gimbaled stereo-vision camera rig transmitting video to the Rift, and matching head movements received from the Oculus Rift. The vision platform is mounted on a Remote-controlled robot which is completely wireless.

One of the big challenges with using VR headsets is lag, causing motion sickness in some cases. He had to tackle the problem of latency – reducing the time from moving the head to getting a matching image on the headset – Oculus Rift team specified it should be less than 20ms. The other important requirement is a high frame rate, in this case 60 frames per second. [JoLau] succeeded in overcoming most of the problems, although in conclusion he does mention a couple of enhancements that he would like to add, given more time.

[JoLau] provides a detailed description of the various sub-systems that make up IRE – the Stereo camera,  audio and video transmission, media processing, servo driven gimbal for the stereo camera,  and control system code. [JoLau]’s reasoning on some of the interesting hardware choices for several components used in the project makes for interesting reading. Watch a video of the IRE in action below.

Continue reading “Putting Oculus Rift On A Robot”

Build Your Own Gear VR

With Samsung’s new Gear VR announced, developers and VR enthusiasts are awaiting the release of the smartphone connected VR headset. A few people couldn’t wait to get their hands on the platform, so they created, OpenGear, a Gear VR compatible headset.

The OpenGear starts off with a Samsung Galaxy Note 4, which is the target platform for the Gear VR headset. A cardboard enclosure, similar to the Google Cardboard headset, holds the lenses and straps the phone to your face.

The only missing part is the motion tracking electronics. Fortunately, ST’s STM32F3 Discovery development board has everything needed: a microcontroller with USB device support, a L3GD20 3 axis gyro, and a LSM303DLHC accelerometer/magnetometer. These components together provide a USB inertial measurement unit for tracking your head.

With the Discovery board strapped to the cardboard headset, an open-source firmware is flashed. This emulates the messages sent by a legitimate Oculus Rift motion tracker. The Galaxy Note 4 sees the device as a VR headset, and lets you run VR apps.

If you’re interested, the OpenGear team is offering a development kit. This is a great way for developers to get a head start on their apps before the Gear VR is actually released. The main downside is how you’ll look with this thing affixed to your face. There’s a head-to-head against the real Gear VR after the break.

[via Road To VR]

Continue reading “Build Your Own Gear VR”