The BBC Micro, Lovingly Simulated In VR

The BBC Micro was many peoples’ first exposure to home computing, and thanks to [Dominic Pajak], you can fire up this beloved hardware in WebXR. Is it an emulator? Yes, but it’s also much more than that.

The machine, the CRT, the keycaps, and even the sounds of the original keypresses are all brought to life as accurately as possible. The result is not just an emulator. It’s a lovingly-made BBC Micro simulator you can use with a VR headset. Or just use your browser and type on your real keyboard if you like.

Continue reading “The BBC Micro, Lovingly Simulated In VR”

Experiencing Visual Deficits And Their Impact On Daily Life, With VR

Researchers presented an interesting project at the 2024 IEEE Conference on Virtual Reality and 3D User Interfaces: it uses VR and eye tracking to simulate visual deficits such as macular degeneration, diabetic retinopathy, and other visual diseases and impairments.

Typical labels and pill bottles can be shockingly inaccessible to a variety of common visual deficits.

VR offers a unique method of allowing people to experience the impact of living with such conditions, a point driven home particularly well by having the user see for themselves the effect on simple real-world tasks such as choosing a pill bottle, or picking up a mug. Conditions like macular degeneration (which causes loss of central vision) are more accurately simulated by using eye tracking, a technology much more mature nowadays than it was even just a few years ago.

The abstract for the presentation is available here, and if you have some time be sure to check out the main index for all of the VR research demos because there are some neat ones there, including a method of manipulating a user’s perception of the shape of the ground under their feet by electrically-stimulating the tendons of the ankle.

Eye tracking is in a few consumer VR products nowadays, but it’s also perfectly feasible to roll your own in a surprisingly slick way. It’s even been used on jumping spiders to gain insights into the fascinating and surprisingly deep perceptual reality these creatures inhabit.

Apple Vision Pro’s Secret To Smooth Visuals? Subtly Substandard Optics

The displays inside the Apple Vision Pro have 3660 × 3200 pixels per eye, but veteran engineer [Karl Guttag]’s analysis of its subtly blurred optics reminds us that “resolution” doesn’t always translate to resolution, and how this is especially true for things like near-eye displays.

The Apple Vision Pro lacks the usual visual artifacts (like the screen door effect) which result from viewing magnified pixelated screens though optics. But [Karl] shows how this effect is in fact hiding in plain sight: Apple seems to have simply made everything just a wee bit blurry thanks to subtly out-of-focus lenses.

The thing is, this approach of intentionally de-focusing actually works very well for consuming visual content like movies or looking at pictures, where detail and pixel-to-pixel contrast is limited anyway.

Clever loophole, or specification shenanigans? You be the judge of that, but this really is evidence of how especially when it comes to things like VR headsets, everything is a trade-off. Improving one thing typically worsens others. In fact, it’s one of the reasons why VR monitor replacements are actually a nontrivial challenge.

Stepping Inside Art In VR, And The Workflow Behind It

The process of creating something is always chock-full of things to learn, so it’s always a treat when someone takes the time and effort to share it. [Teadrinker] recently published the technique and workflow behind bringing art into VR, which explains exactly how they created a virtual reality art gallery that allows one to step inside paintings, called Art Plunge (free on Steam.)

Extending a painting’s content to fill in the environment is best done by using other works by the same artist.

It walks through not just how to obtain high-resolution images of paintings, but also discusses how to address things like adjusting the dynamic range and color grading to better match the intended VR experience. There is little that is objectively correct in technical terms when it comes to the aesthetic presentation details like brightness and lighting, so guidance on what does and doesn’t work well and how to tailor to the VR experience is useful information.

One thing that is also intriguing is the attention paid to creating a sense of awe for viewers. The quality, the presentation, and even choosing sounds are all important for creating something that not only creates a sense of awe, but does so in a way that preserves and cultivates a relationship between the art and the viewer that strives to stay true to the original. Giving a viewer a sense of presence, after all, can be more than just presenting stereoscopic 3D images or fancy lightfields.

You can get a brief overview of the process in a video below, but if you have the time, we really do recommend reading the whole breakdown.

Continue reading “Stepping Inside Art In VR, And The Workflow Behind It”

UEVR Project Converts Games To VR, Whether They Like It Or Not

UEVR, or the Universal Unreal Engine VR Mod by [praydog] is made possible by some pretty neat software tricks. Reverse engineering concepts and advanced techniques used in game hacking are leveraged to add VR support, including motion controls, to applicable Unreal Engine games.

The UEVR project is a real-world application of various ideas and concepts, and the results are impressive. One can easily not only make a game render in VR, but it also handles managing the player’s perspective (there are options for attaching the camera view to game objects, for example) and also sensibly maps inputs from VR controllers to whatever the game is expecting. This isn’t the first piece of software that attempts to convert flatscreen software to VR, but it’s by far the most impressive.

There is an in-depth discussion of the techniques used to sensibly and effectively locate and manipulate game elements, not for nefarious purposes, but to enable impressive on-demand VR mods in a semi-automated manner. (Although naturally, some anti-cheat software considers this to be nefarious.)

Many of the most interesting innovations in VR rely on some form of modding, from magic in Skyrim that depends on your actual state of mind to adding DIY eye tracking to headsets in a surprisingly effective, modular, and low-cost way. As usual, to find cutting-edge experimentation, look to the modding community.

Quest 3 VR Headset Can Capture 3D Video (Some Tampering Required)

The Quest 3 VR headset is an impressive piece of hardware. It is also not open; not in the way most of us understand the word. One consequence of this is the inability in general for developers or users to directly access the feed of the two color cameras on the front of the headset. However, [Hugh Hou] shares a method of doing exactly this to capture 3D video on the Quest 3 headset for later playback on different devices.

The Quest 3 runs Android under the hood, and Developer Mode plus some ADB commands does the trick.

There are a few steps to the process and it involves enabling developer mode on the hardware then using ADB (Android Debug Bridge) commands to enable the necessary functionality, but it’s nothing the average curious hacker can’t handle. The directions are written out in the video’s description, along with a few handy links. (The video is embedded below just under the page break, but view it on YouTube to access the description and all the info in it.)

He also provides some excellent guidance on practical things like how to capture stable shots, editing the videos, and injecting the necessary metadata for optimal playback on different platforms, including hassle-free uploading to a service like YouTube. [Hugh] is no stranger to this kind of video and camera handling and really knows his stuff, and it’s great to see someone provide detailed instructions.

This kind of 3D video comes down to recording two different views, one for each eye. There’s another way to approach 3D video, however: light fields are also within reach of enterprising hackers, and while they need more hardware they yield far more compelling results.

Continue reading “Quest 3 VR Headset Can Capture 3D Video (Some Tampering Required)”

See Some Of The Stranger VR Ideas From SIGGRAPH

[Devin Coldewey] shared his experiences with some of the more unusual VR concepts on display at SIGGRAPH 2023. Some of these ideas are pretty interesting in their own right, and even if they aren’t going to actually become commercial products they give some insight into the kinds of problems that are being worked on. Read on to see if anything sparks ideas of your own.

In the area of haptics and physical feedback, Sony shared research prototypes that look like short batons in which are hidden movable weights. These weights can shift up or down on demand, altering their center of gravity. [Devin] states that these units had a mild effect on their own, but when combined with VR visuals the result was impressive. There’s a video demonstration of how they work. Continue reading “See Some Of The Stranger VR Ideas From SIGGRAPH”