Voice Controlled RGB LEDs Go Big

When we see RGB LEDs used in a project, they’re often used more for aesthetic purposes than as a practical source of light. It’s an easy way to throw some color around, but certainly not the sort of thing you’d try to light up anything larger than a desk with. Apparently nobody explained the rules to [Brian Harms] before he built Light[s]well.

Believe it or not, this supersized light installation doesn’t use any exotic hardware you aren’t already familiar with. Fundamentally, what we’re looking at is a WiFi enabled Arduino MKR1000 driving strips of NeoPixel LEDs. It’s just on a far larger scale than we’re used to, with a massive 4 x 8 aluminum extrusion frame suspended over the living room.

Onto that frame, [Brian] has mounted an undulating diffuser made of 74 pieces of laser-cut cardstock. Invoking ideas of waves or clouds, the light looks like its of natural or even biological origin while at the same time having a distinctively otherworldly quality to it.

The effect is even more pronounced when the RGB LEDs kick in, thanks to the smooth transitions between colors. In the video after the break, you can see Light[s]well work its way from bright white to an animated rainbow. As an added touch, he added Alexa voice control through Arduino’s IoT Cloud service.

While LED home lighting is increasingly becoming the norm, projects like Light[s]well remind us that we aren’t really embracing the possibilities offered by the technology. The industry has tried so hard to make LEDs fit into the traditional role of incandescent bulbs, but perhaps its time to rethink things.

Continue reading “Voice Controlled RGB LEDs Go Big”

Voice Controlled Sofa Meets Your Every Beverage Need

It’s often taken for grated, but the modern world is full of luxuries. Home automation, grocery delivery, and even access to the Internet are great tools to have at hand, but are trivial to most of us. If these modern wonders are not enough for you, and the lap of luxury is still missing a certain je ne sais quoi, allow us to introduce you to the ultimate convenience: a voice controlled, beer-dispensing sofa with a built-in refrigeration system.

This is a project from [Garage Avenger] and went through a number of iterations before reaching this level of polish. Metal work on the first version didn’t fit together as expected, and there were many attempts at actual refrigeration before settling on repurposing an actual refrigerator. With those things out of the way, he was able to get to the meat of a project. The couch-refrigerator holds 12 beers, and they are on a conveyor belt which automatically places the next beer onto the automated drawer. When commanded (by voice, app, or remote) the sofa opens the drawer so the occupant can grab one easily without having to move more than an arm. Everything, including the voice recognition module, is controlled by an Arduino, as is tradition.

The attention to detail is excellent as well. The remote control contains a built-in bottle opener, for one, there are backlights and a glass cover for the refrigerator, and the drawer is retracted automatically when it senses the beer has been obtained. We couldn’t ask for much more from our own couches, except maybe that they take us where we want to go. But maybe it’s best to keep these two couch use cases separate for now.

Continue reading “Voice Controlled Sofa Meets Your Every Beverage Need”

Using Voice Commands To Start A Jeep

If you’ve got a car built in the last 5 years or so, it’s quite likely it’s started by the push of a button when in the presence of a keyfob. Older vehicles make do with the twist of a key. Of course, starting a car by voice command would be cool, and that’s what [John Forsyth] set out to do.

The build uses a Macbook to handle voice recognition, using its Dictation feature. With a hefty download, it’s capable of doing the task offline, making things easier. The dictated words are passed to a Python script, which searches for words like “start” and “go” as a trigger. When an appropriate command is received, the Python script sends a signal over a USB-serial connection to an attached Arduino. The Arduino then toggles a relay connected to the Jeep’s external starter solenoid, starting the vehicle.

As a fan of recent popular films, [John] programmed the system to respond to the command “Jarvis, let’s get things going!”, causing the vehicle to spring into life. There’s room for future improvement, too – the system could benefit from being a little more compact, and there’s a long delay between finishing the sentence and the vehicle starting. A Raspberry Pi and faster dictation software could likely help in this regard.

We’ve seen voice commands used for everything from chess to finding electronic components. Video after the break.

Continue reading “Using Voice Commands To Start A Jeep”

Voice Chess Uses Phone, Arduino, And An Electromagnet

[Diyguypt] may be an altruist to provide the means for people who can’t manipulate chess pieces to play the game. Or he may just have his hands too busy with food and drink to play. Either way, his voice command chessboard appears to work, although it has a lot of moving parts both figuratively and literally. You can check out the video below to see how it works.

The speech part is handled by an Android phone and uses Google’s voice services, so if you don’t want Google listening to your latest opening gambit, you’ll want to pass this one up. The phone uses an app that talks to the Arduino via Bluetooth, which means the Arduino needs a Bluetooth module.

Continue reading “Voice Chess Uses Phone, Arduino, And An Electromagnet”

Televox: The Past’s Robot Of The Future

When I read old books, I like to look for predictions of the future. Since we are living in that future, it is fun to see how they did. Case in point: I have a copy of “The New Wonder Book of Knowledge”, an anthology from 1941. This was the kind of book you wanted before there was a Wikipedia to read in your spare time. There are articles about how coal is mined, how phonographs work, and the inner workings of a beehive. Not the kind of book you’d grab to look up something specific, but a great book to read if you just want to learn something interesting. In it there are a few articles about technology that seemed ready to take us to the future. One of those is the Televox — a robot from Westinghouse poised to usher in an age of home and industrial mechanical servants. Robots in 1941? Actually, Televox came into being in 1927.

If you were writing about the future in 2001, you might have pictured city sidewalks congested with commuters riding Segways. After all, in 2001, we were told that something was about to hit the market that would “change everything.” It had a known inventor, Dean Kamen, and a significant venture capitalist behind it. While it has found a few niche markets, it isn’t the billion dollar personal transportation juggernaut that was predicted.

But technology is like that. Sometimes things seem poised for greatness and disappear — bubble memory comes to mind. Sometimes things have a few years of success and get replaced by something better. Fax machines or floppy drives, for example. The Televox was a glimpse of what was to come, but not in any way that people imagined in 1941. Continue reading “Televox: The Past’s Robot Of The Future”

FindyBot3000 Is Listening And Ready To Help

It’s a problem every maker faces at one time or other – how to organise the ever-growing mass of components in the workshop. Some give up and just live with box upon box of disordered parts. That wasn’t good enough for [Inventor22], though – who created FindyBot3000 to tackle the job. 

The first step is to source a set of those tiny component drawers we all know and love. These are then combined with WS2812B LED strips, which act as indicators for each individual drawer. A Particle Photon is used as the brains of the operation, and drives the strips. So far, so good.

Of course, blinking LEDs are great and all, but it’s the voice control where things get really interesting. Through Google Home and IFTTT, it’s possible to give commands to the Particle Photon. This can be used to manage the parts in the drawers, as well as to quickly highlight the location of various components. It’s backed up with an Azure backend, which manages the component database and keeps track of everything.

It’s a tidy build that does away with tiny sticky labels, and is reconfigurable on the fly as parts come and go. Of course, if you’re mostly storing SMD parts, you might prefer a reel based solution. Video after the break.

Continue reading “FindyBot3000 Is Listening And Ready To Help”

Talk To Your ‘Scope, And It Will Obey

An oscilloscope is a device that many of us use, and which we often have to use while our hands are occupied with test probes or other tools. [James Wilson] has solved the problem of how to control his ‘scope no-handed, by connecting it to a Raspberry Pi 3 running the snips.ai voice assistant. This is an interesting piece of software that runs natively upon the device in contrast to the cloud service provided by the likes of Alexa or Google Assistant.

The ‘scope in question is a Keysight 1000-X that can be seen in the video below the break, but looking at the Python code we could imagine the same technique being brought to other instruments such as the Rigol 1054z we looked at controlling via USB a year or two ago. The use of the snips.ai software provides a pointer to how voice-controlled projects in our community might evolve beyond the cloud services, interestingly though they do not make a big thing of it their software appears to be open-source.

Oscilloscopes do not have to be remotely controlled by voice alone. It seems to be a common desire to take measurements no-handed — one project we’ve featured in the past did the job with a foot switch.

Continue reading “Talk To Your ‘Scope, And It Will Obey”