Sony Ericsson Promotes Android Bootloader Unlocking

Sony Ericsson recently added a new section to their developer world portal called Unlocking the boot loader. They provide all the information and tools needed to root some of their newer Android phones.

Of course, this information comes from Sony Ericsson dripping with warnings, disclaimers and warranty-voiding rhetoric. Once you’ve waded through all of that, you’ll have to enter your phone’s IMEI number, your name and email address in order to get your phone’s unique bootloader unlock key. Here’s hoping they don’t use the form information to instantly void warranties.

Unlocking doesn’t come without consequences, but from UI tweaks and performance improvements to custom apps and tethering, there are probably more reasons to unlock your Android device than there are reasons to leave it alone. In an age where people are making a fuss about companies adding stumbling blocks for would-be jailbreakers, it’s good to see that at least one of them is doing what they can to help hackers take the plunge. Anyone want to clear up why Sony Ericsson feels like supporting hackers but Sony sues people for doing similar things on the ps3?

Thanks to [flip] | remixed image credit (cc by-sa 2.0): [taka@p.p.r.s]

Haptic GPS Sneakers For The Visually Impaired

gps_haptic_shoe

The world can be a pretty difficult place to navigate when you lack the ability to see it. There are many visually impaired people across the globe, with some figures claiming up to 40 million individuals affected. While walking canes and seeing-eye dogs can be a huge help, [Anirudh] of Multimodal Interactions Group, HP Labs India, and some students at the College of Engineering in Pune, India (COEP) have been hard at work constructing a haptic navigation system for the blind.

[Anirudh Sharma and Dushyant Mehta] debuted their haptic feedback shoe design during an MIT Media Lab Workshop hosted at COEP. In its current form, Google Maps and GPS data is sourced from an Android device, which is fed to an Arduino via Bluetooth. The Arduino then activates one of four LEDs mounted on a shoe insert that are used to indicate which direction the individual should travel in order to safely reach their destination. While the current iteration uses LEDs, they will be swapped out for small vibrating motors in the final build.

We’re always fans of assistive technology hacks, and we think this one is great. The concept works well, as we have seen before, so it’s just a matter of getting this project refined and in the hands shoes of those who need it.

Stick around for a quick video about the project filmed at the MIT/COEP event.

Continue reading “Haptic GPS Sneakers For The Visually Impaired”

A Breakout Board For Your Android Phone

[sparkfun] announced a new board called the IOIO (pronounced “yo-yo”) this week that allows communication from your Android devices to your upcoming projects.

The board hasn’t been released yet; [sparkfun] is still pulling together documentation and waiting on their first production run. We do know that the board contains a PIC24F MCU, and will give your phone analog input,  and Digital I/O, PWM, I2C, SPI, and UART control. Communication with the board is over the USB port on your phone.

The brilliant thing about this board is that an external programmer isn’t required. Everything you connect to this board can be controlled from within Android apps. We covered Android development in a hackaday tutorial series before, so now it’s possible to put these skills to give your projects a touch screen, internet and bluetooth connections, a camera, or your phone’s accelerometers. Very slick.

Video of some basic functions demonstrating what possible with this board after the jump, but feel free to comment and tell us what you’d like to see done with this board.

Using TouchOSC With Your Projects

[Marcus] wrote a guide to using TouchOSC to control your projects. He sent a link to us after reading our feature about using Open Sound Control for Arduino without an Ethernet shield. He’s been using that method for quite some time now, but takes it one step further by using a smartphone as a control device. He designs his own user interface for the iPhone using TouchOSC. This is a package which we’ve seen in other projects but now you can get an idea of how easy it really is.

The project starts by interfacing an Arduino with the device you’d like to control. The circuit above patches into a remote control using a couple of transistors. Now the Arduino can simulate button presses on that remote, sending the signal to turn a light on or off. Next, TouchOSC is used for the smartphone – here it’s an iPhone but the suite works on Android as well. In the video after the break you can watch a quick interface design demo. Buttons are dragged into existence, uploaded to the phone, then configured to control you device over a network. A Processing sketch listens for OSC commands and then sends instructions to the Arduino via USB.

Continue reading “Using TouchOSC With Your Projects”

Sound-sensitive Android Figure Speaks In Morse Code

mechanized_android_figure

Instructables user [tanbata] recently got his hands on a Google Anroid figurine and thought that while it looked great, it served no real purpose. He decided to change that, and converted this once-useless hunk of plastic into a miniature robot that moves and responds to sound.

He pried of the head of the figure and got busy fitting a servo into the Android’s body to enable head movement. An ATiny was added to control the figure, along with a microphone to enable it to respond to sound. A piezo was inserted to relay Morse code messages, and a handful of LEDs were installed in the body cavity and eyes of the figure just for kicks.

When the bot is powered on and senses a loud enough sound, the eyes light, the head spins from side to side, and the robot spouts off a random message in Morse code as you can see in the video below.

It’s not the most advanced project out there, but with a few tweaks, it could make for a great USB-powered email or IM notification system for your PC. Better yet, it’s a great project to do with a child who is interested in electronics, since they get to make a cool robot toy they can keep.

Continue reading “Sound-sensitive Android Figure Speaks In Morse Code”

Android Skips Uncanny Valley – Fills In At The Office For You

For those that are unaware, Androids are often judged by where they fall on the uncanny valley curve, a graph that maps human revulsion to robots that closely resemble humans but are just a bit off (similar to how a corpse resembles a living person). This offering jumps right over that dip of the curve and takes its rightful place as a human stand-in. Well, except that you’re probably going to notice the limbless torso… but pay no attention to the man behind the curtain!

This is the result of research by Geminoid Lab at Aalborg University. It is the twin of its creator and in an effort to be as human as possible, movements are mimicked using facial recognition from a human operator. We’d bet that with some clever learning routines you can map out and index common mannerisms from the original person for later use with this body-snatcher-esque copy. Take a look at the clips after the break; we don’t think you’ll be creeped out at all.

Continue reading “Android Skips Uncanny Valley – Fills In At The Office For You”

FareBot – Android NFC Proof Of Concept

farebot_logo

Upon learning that the Nexus S smartphone was equipped with a Near Field Communications NFC) radio, [Eric Butler] decided he would put the newly released Gingerbread SDK to good use.  Focusing initially on ORCA fare cards used by several Washington state transit systems, he built an open-source application he calls FareBot, which can read data from any MIFARE DESFire branded cards.  Utilizing the NFC radio in the Nexus S, he was able to dump all of the unprotected information from the fare cards, including  the remaining card balance and the last 10 locations where the card was used.

The author hopes that his proof of concept application encourages other developers to expand on his project and to explore the data stored on transit cards around the world. While it is in its early stages, [Eric] would ultimately like to see this project expanded to allow the use of NFC-enabled smartphones as transit cards themselves via downloadable apps.  He suggests that helping people understand the amount of data which can be freely obtained from these cards will eventually force the manufacturers to better inform consumers of the existing system’s shortcomings, which in turn might spur on smartphone-based transit initiatives.