Boeing 777 From Manilla Folders, A 6+ Year Effort

The closer you look the more you will be in awe of this shockingly intricate 777 replica. The fully-articulating landing gear alone has over 2,000 parts and 200 hours of assembly, not even including the penny-sized tires with individually-cut lug nuts. All carved from manilla office folders by hand.

HAD - 777 WingA high school art architecture class in 2008 inspired this build by teaching a few papercrafting techniques. When [Luca] got a hold of a precision Air India 777-300ER schematic, he started building this 5 foot long 1:60 scale model. His project has received a fair amount of media attention over the years, including some false reports that he was so focused on the build that he dropped out of college (he did, for 2 years, but for other reasons). 6.5 years in the making, [Luca] is rounding the homestretch.

HAD - 777 GearThe design is manually drawn in Illustrator from the schematics, then is printed directly onto the manilla folders. Wielding an X-acto knife like a watch-maker, [Luca] cuts all the segments out and places them with whispers of glue. Pistons. Axles. Clamps. Tie rods. Brackets. Even pneumatic hoses – fractions of a toothpick thin – are run to their proper locations. A mesh behind the engine was latticed manually from of hundreds of strands. If that was not enough, it all moves and works exactly as it does on the real thing.

Continue reading “Boeing 777 From Manilla Folders, A 6+ Year Effort”

Retrotechtacular: Supersonic Transport Initiatives

In the early days of PBS member station WGBH-Boston, they in conjunction with MIT produced a program called Science Reporter. The program’s aim was explaining modern technological advances to a wide audience through the use of interviews and demonstrations. This week, we have a 1966 episode called “Ticket Through the Sound Barrier”, which outlines the then-current state of supersonic transport (SST) initiatives being undertaken by NASA.

MIT reporter and basso profondo [John Fitch] opens the program at NASA’s Ames research center. Here, he outlines the three major considerations of the SST initiative. First, the aluminium typically used in subsonic aircraft fuselage cannot withstand the extreme temperatures caused by air friction at supersonic speeds. Although the Aérospatiale-BAC Concorde was skinned in aluminium, it was limited to Mach 2.02 because of heating issues. In place of aluminium, a titanium alloy with a melting point of 3,000°F is being developed and tested.

Continue reading “Retrotechtacular: Supersonic Transport Initiatives”

How To Properly Dispose Of Fruitcake

[youtube=http://www.youtube.com/watch?v=3Tsgz3G0E1c]

While doing serious fruitcake research, (no, really) we stumbled across the Great Fruitcake Toss held every January in Colorado. The particular entry above caught our eye. Omega 380 was built by a group of Boeing engineers and currently holds the distance record of 1,420feet. It’s a large compressed air cannon. All pressure is human generated using an exercise bike turning a pump. Apparently the team’s first contest entry was a classic surgical tubing slingshot. It eventually broke down during a very cold year, so they switched to this newer design. You can see more videos on the Operation Fruitcake blog.