Electric Drift Trike Needs Water Cooling

Electric vehicles of all types are quickly hitting the market as people realize how inexpensive they can be to operate compared to traditional modes of transportation. From cars and trucks, to smaller vehicles such as bicycles and even electric boats, there’s a lot to be said for simplicity, ease of use, and efficiency. But sometimes we need a little bit more out of our electric vehicles than the obvious benefits they come with. Enter the electric drift trike, an electric vehicle built solely for the enjoyment of high torque electric motors.

This tricycle is built with some serious power behind it. [austiwawa] constructed his own 48V 18Ah battery with lithium ion cells and initially put a hub motor on the front wheel of the trike. When commenters complained that he could do better, he scrapped the front hub motor for a 1500W brushless water-cooled DC motor driving the rear wheels. To put that in perspective, electric bikes in Europe are typically capped at 250W and in the US at 750W. With that much power available, this trike can do some serious drifting, and has a top speed of nearly 50 kph. [austiwawa] did blow out a large number of motor controllers, but was finally able to obtain a beefier one which could handle the intense power requirements of this tricycle.

Be sure to check out the video below to see the trike being test driven. The build video is also worth a view for the attention to detail and high quality of this build. If you want to build your own but don’t want to build something this menacing, we have also seen electric bikes that are small enough to ride down hallways in various buildings, but still fast enough to retain an appropriate level of danger.

Continue reading “Electric Drift Trike Needs Water Cooling”

Pedal Far With A Solar Powered Tricycle

More and more electric bikes have been rolling out into the streets lately as people realize how inexpensive and easy they are to ride and use when compared to cars. They can also be pedaled like a normal bike, so it’s still possible to get some exercise with them too. Most have a range somewhere around 10-30 miles depending on battery size, weight, and aerodynamics, but with a few upgrades such as solar panels it’s possible to go much, much further on a charge.

[The Rambling Shepherd] had a tricycle (in the US, generally still considered a bicycle from a legal standpoint) that he had already converted to electric with a hub motor and battery, and was getting incredible range when using it to supplement his manual pedaling. He wanted to do better, though, and decided to add a few solar panels to his build. His first attempt didn’t fare so well as the 3D-printed mounts for the panel failed, but with a quick revision his second attempt survived a 50-mile trip. Even more impressive, he only had his battery half charged at the beginning of the journey but was still able to make it thanks to the added energy from the panels.

If you’re thinking that this looks familiar, we recently featured a tandem tricycle that was making a solar-powered trip from Europe to China with a similar design. It has the advantage of allowing the rider to pedal in the shade, and in a relatively comfortable riding position compared to a normal bike. Future planned upgrades include an MPPT charge controller to improve the efficiency of the panels.

Continue reading “Pedal Far With A Solar Powered Tricycle”

Cheating the Perfect Wheelie With Sensors And Servos

Everyone remembers popping their first wheelie on a bike. It’s an exhilarating moment when you figure out just the right mechanics to get balanced over the rear axle for a few glorious seconds of being the coolest kid on the block. Then gravity takes over, and you either learn how to dismount the bike over the rear wheel, or more likely end up looking at the sky wondering how you got on the ground.

Had only this wheelie cheating device been available way back when, many of us could have avoided that ignominious fate. [Tom Stanton]’s quest for the perfect wheelie led him to the design, which is actually pretty simple. The basic idea is to apply the brakes automatically when the bike reaches the critical angle beyond which one dares not go. The brakes slow the bike, the front wheel comes down, and the brakes release to allow you to continue pumping along with the wheelie. The angle is read by an accelerometer hooked to an Arduino, and the rear brake lever is pulled by a hobby servo. We honestly thought the servo would have nowhere near the torque needed, but in fact it did a fine job. As with most of [Tom]’s build his design process had a lot of fits and starts, but that’s all part of the learning. Was it worth it? We’ll let [Tom] discuss that in the video, but suffice it to say that he never hit the pavement in his field testing, although he appeared to be wheelie-proficient going into the project.

Still, it was an interesting build, and begs the question of how the system could be improved. Might there be some clues in this self-balancing motorized unicycle?

Continue reading “Cheating the Perfect Wheelie With Sensors And Servos”

Power Steering Pump Repurposed for Great Speed

Electric bikes are getting a lot of attention lately. Pretty much anyone can buy a kit online and get a perfectly street legal ride with plenty of range. But if you don’t want to take the kit route, and you’d rather take a tack that will get you noticed more around these parts, take some notes from [Jule553648]’s recent build that definitely isn’t using any parts from a kit.

The motor from the build is an electric power steering pump from a junkyard car. This gets mounted on a one-off rear bike rack and drives the rear tire with help from some gears from a pocket bike gearbox from eBay. A lot of the parts in this build were designed and built using CAD and a machine shop, and the parts for the battery and the power controller were sourced via China to save on cost.

The whole build has a homemade vibe that we find irresistible. The bike can go 35 km/h on level ground without breaking a sweat and has about 40 km of range which is nothing to scoff at. It might even be street legal depending on the wattage of the motor and whether or not you live in Europe (where throttles are generally not allowed on electric bikes). If you’re lacking a machine shop, though, we featured a very well-built kit ebike a while back that you could use as a model to get your feet wet.

Continue reading “Power Steering Pump Repurposed for Great Speed”

Electric Bike From The Ground Up

Electric vehicles are getting more traction these days, but this trend is rolling towards us in more ways than just passenger vehicles. More and more bikes are being electrified too, since the cost of batteries has come down and people realize that they can get around town easily without having to pay the exorbitant price to own, fuel, and maintain a car. Of course there are turnkey ebikes, but those don’t interest us much around here. This ebike from [Andy] is a master class in how to build your own ebike.

Due to some health issues, [Andy] needed a little bit of assistance from an electric motor on his bike, but found out that the one he wanted wouldn’t fit his current bike quite right. He bought a frame from eBay with the right dimensions and assembled the bike from scratch. Not only that, but when it was time to put the battery together he sourced individual 18650 cells and built a custom battery for the bike. His build goes into great detail on how to do all of these things, so even if you need a lithium battery for another project this build might be worth a read.

If you’ve never been on an electric bike before, they’re a lot of fun to ride. They’re also extremely economical, and a good project too if you’re looking for an excuse to go buy a kit and get to work. You can get creative with the drivetrain too if you’d like to do something out of the box, such as this bike that was powered by AA batteries and a supercapacitor.

Row Your Bike To China

If you’re a fan of endurance racing motor vehicles, there’s one that puts the 24 Hours of Le Mans, the Dakar Rally, and the Baja 1000 to shame, and the race doesn’t even involve cars. Indeed, the vehicles used for this massive trek from France to China are electric bicycles, powered only by solar panels. This is the epic Sun Trip endurance race, and one of its competitors built a unique tandem bike that is powered both by pedaling, rowing, and the solar panels.

The tandem bike is interesting on its own since the atypical design uses a back-to-back layout which means one person is facing backward, but the storage space is dramatically increased over the normal forward-facing layout. The person in the rear doesn’t pedal, though. [Justin_le] built an upper-body-powered rowing station for that spot so that the person riding back there can rest their legs but still help propel the vehicle. Of course, there’s also a solar panel roof so the two riders can pedal and row in the shade, which includes MPPT and solar tracking which drives a small electric motor on board as well.

This race started in June but is still going on. There’s a live GPS feed so you can keep up with the teams, and if you get really inspired you can go ahead and sign up for the 2019 race as well. This particular bike was also featured on Radio Canada as well if you’d like to learn more about it.

Thanks to [Arthur] for the tip!

Pavement Projection Provides Better Bicycle Visibility at Night

Few would question the health benefits of ditching the car in favor of a bicycle ride to work — it’s good for the body, and it can be a refreshing relief from rat race commuting. But it’s not without its perils, especially when one works late and returns after dark. Most car versus bicycle accidents occur in the early evening, and most are attributed to drivers just not seeing cyclists in the waning light of day.

To decrease his odds of becoming a statistics and increase his time on two wheels, [Dave Schneider] decided to build a better bike light. Concerned mainly with getting clipped from the rear, and having discounted the commercially available rear-mounted blinkenlights and wheel-mounted persistence of vision displays as insufficiently visible, [Dave] looked for ways to give drivers as many cues as possible. Noticing that his POV light cast a nice ground effect, he came up with a pavement projecting display using four flashlights. The red LED lights are arranged to flash onto the roadway in sequence, using the bike’s motion to sweep out a sort of POV “bumper” to guide motorists around the bike. The flashlight batteries were replaced with wooden plugs wired to the Li-ion battery pack and DC-DC converter in the saddle bag, with an Arduino tasked with the flashing duty.

The picture above shows a long exposure of the lights in action, and it looks very effective. We can’t help but think of ways to improve this: perhaps one flashlight with a servo-controlled mirror? Or variable flashing frequency based on speed? Maybe moving the pavement projection up front for a head-down display would be a nice addition too.