Lockheed Wants To Build The Next Lunar Lander

The United States is going back to the moon, and it’s happening sooner than you would think. NASA is going back to the moon in 2024, and they might just have the support of Congress to do so.

Getting to the moon is one thing, and since SpaceX launched a car to the asteroid belt, this future of boots on the moon after Apollo seems closer than ever before. But what about landing on the moon? There’s only ever been one Lunar Lander that has taken people down to the moon and brought them back again, and it’s doubtful that design will be used again. Now, Lockheed has their own plan for landing people on the moon, and they might be able to do it by 2024.

Continue reading “Lockheed Wants To Build The Next Lunar Lander”

When New Space Loses Out To NASA Pragmatism

You’ve got to admit, things have been going exceptionally well for SpaceX. In the sixteen years they’ve been in operation, they’ve managed to tick off enough space “firsts” to make even established aerospace players blush. They’re the first privately owned company to not only design and launch their own orbital-class rocket, but to send a spacecraft to the International Space Station. The first stage of their Falcon 9 rocket is the world’s only orbital booster capable of autonomous landing and reuse, and their Falcon Heavy has the highest payload capacity of any operational launch system. All of which they’ve managed to do at a significantly lower cost than their competition.

United Launch Alliance Atlas V

So it might come as a surprise to hear that SpaceX recently lost out on a lucrative NASA launch contract to the same entrenched aerospace corporations they’ve been running circles around for the last decade. It certainly seems to have come as a surprise to SpaceX, at least. Their bid to launch NASA’s Lucy mission on the Falcon 9 was so much lower than the nearly $150 million awarded to United Launch Alliance (ULA) for a flight on their Atlas V that the company has decided to formally protest the decision. Publicly questioning a NASA contract marks another “first” for the company, and a sign that SpaceX’s confidence in their abilities has reached the point that they’re no longer content to be treated as a minor player compared to heavyweights like Boeing and Lockheed Martin.

But this isn’t the first time NASA has opted to side with more established partners, even in the face of significantly lower bids by “New Space” companies. Their decision not to select Sierra Nevada Corporation’s Dream Chaser spaceplane for the Commercial Crew program in 2014, despite it being far cheaper than Boeing’s CST-100 Starliner, triggered a similar protest to the US Government Accountability Office (GAO). In the end, the GAO determined that Boeing’s experience and long history justified the higher sticker price of their spacecraft compared to the relative newcomer.

NASA has yet to officially explain their decision to go with ULA over SpaceX for the Lucy mission, but in light of what we know about the contract, it seems a safe bet they’ll tell SpaceX the same thing they told Sierra Nevada in 2014. The SpaceX bid might be lower, but in the end, NASA’s is willing to pay more to know it will get done right. Which begs the question: at what point are the cost savings not compelling enough to trust an important scientific mission (or human lives) to these rapidly emerging commercial space companies?

Continue reading “When New Space Loses Out To NASA Pragmatism”

Bell Labs, Skunk Works, And The Crowd Sourcing Of Innovation

I’ve noticed that we hear a lot less from corporate research labs than we used to. They still exist, though. Sure, Bell Labs is owned by Nokia and there is still some hot research at IBM even though they quit publication of the fabled IBM Technical Disclosure Bulletin in 1998. But today innovation is more likely to come from a small company attracting venture capital than from an established company investing in research. Why is that? And should it be that way?

The Way We Were

There was a time when every big company had a significant research and development arm. Perhaps the most famous of these was Bell Labs. Although some inventions are inevitably disputed, Bell Labs can claim radio astronomy, the transistor, the laser, Unix, C, and C++ among other innovations. They also scored a total of nine Nobel prizes.

Bell Labs had one big advantage: for many years it was part of a highly profitable monopoly, so perhaps the drive to make money right away was less than at other labs. Also, I think, times were different and businesses often had the ability to look past the next quarter.

Continue reading “Bell Labs, Skunk Works, And The Crowd Sourcing Of Innovation”

Shushing Sonic Booms: NASA’s Supersonic X-Plane To Take Flight In 2021

The history of aviation is full of notable X-Planes, a number of which heralded in new generations of flight. The Bell X-1 became the first aircraft to break the speed of sound during level flight in 1947 with the legendary Charles “Chuck” Yeager at the controls. A few years later the X-2 would push man up to Mach 3, refining our understanding of supersonic flight. In the 1960’s, the North American built X-15 would not only take us to the edge of space, but set a world speed record which remains unbroken.

Compared to the heady post-war days when it seemed the sky was quite literally the limit, X-Planes in the modern era have become more utilitarian in nature. They are often proposed but never built, and if they do get built, the trend has been towards unmanned subscale vehicles due to their lower cost and risk. The few full-scale piloted X-Planes of the 21st century have largely been prototypes for new military fighter jets rather than scientific research aircraft.

But thanks to a commitment from NASA, the Lockheed Martin X-59 might finally break that trend and become another historic vehicle worthy of the X-Plane lineage. Construction has already begun on the X-59, and the program has recently passed a rigorous design and timeline overview by NASA officials which confirmed the agency’s intent to financially and logistically support the development of the aircraft through their Low Boom Flight Demonstrator initiative. If successful, the X-59 will not only help refine the technology for the next generation of commercial supersonic aircraft, but potentially help change the laws which have prevented such aircraft from operating over land in the United States since 1973.

Continue reading “Shushing Sonic Booms: NASA’s Supersonic X-Plane To Take Flight In 2021”

Hackaday Links: February 1, 2015

It’s Sunday evening, and that means Hackaday Links, and that means something crowdfunded. This week it’s UberBlox. It’s a modular construction system based on Al extrusion – basically a modern version of an Erector set. Random musings on the perceived value UberBlox offers in the comments, I’m sure.

[Trevor] sent in something from his Etsy shop. Normally we’d shy away from blatant self-promotion, but this is pretty cool. It’s reproductions of 1960s Lockheed flying saucer plans. We’re not sure if this is nazi moon base/lizard people from the inner earth flying saucer plans or something a little more realistic, but there you go.

3D computer mice exist, as do quadcopters. Here’s the combination. It looks like there’s a good amount of control, and could be used for some aerobatics if you’re cool enough.

Who doesn’t love LED cubes? They’re awesome, but usually limited to one color. Here’s an RGB LED cube. It’s only 4x4x4, but there’s a few animations and a microphone with a beat detection circuit all powered by an ATMega32u4.

A while ago we had a post about a solar powered time lapse rig. Time lapse movies take a while, and the results are finally in.

Retrotechtacular: Supersonic Transport Initiatives

In the early days of PBS member station WGBH-Boston, they in conjunction with MIT produced a program called Science Reporter. The program’s aim was explaining modern technological advances to a wide audience through the use of interviews and demonstrations. This week, we have a 1966 episode called “Ticket Through the Sound Barrier”, which outlines the then-current state of supersonic transport (SST) initiatives being undertaken by NASA.

MIT reporter and basso profondo [John Fitch] opens the program at NASA’s Ames research center. Here, he outlines the three major considerations of the SST initiative. First, the aluminium typically used in subsonic aircraft fuselage cannot withstand the extreme temperatures caused by air friction at supersonic speeds. Although the Aérospatiale-BAC Concorde was skinned in aluminium, it was limited to Mach 2.02 because of heating issues. In place of aluminium, a titanium alloy with a melting point of 3,000°F is being developed and tested.

Continue reading “Retrotechtacular: Supersonic Transport Initiatives”

Retrotechtacular: The Jet Story

A plane from Britain is met in the US by armed security. The cargo? An experimental engine created by Air Commodore [Frank Whittle], RAF engineer air officer. This engine will be further developed by General Electric under contract to the US government. This is not a Hollywood thriller; it is the story of the jet engine.

The idea of jet power started to get off the ground at the turn of the century. Cornell scholar [Sanford Moss]’ gas turbine thesis led him to work for GE and ultimately for the Army. Soon, aircraft were capable of dropping 2,000 lb. bombs from 15,000 feet to cries of ‘you sank my battleship!’, thus passing [Billy Mitchell]’s famous test.

The World War II-era US Air Force was extremely interested in turbo engines. Beginning in 1941, about 1,000 men were working on a project that only 1/10 were wise to. During this time, American contributions tweaked [Whittle]’s design, improving among other things the impellers and rotor balancing. This was the dawn of radical change in air power.

Six months after the crate arrived and the contracts were signed, GE let ‘er rip in the secret testing chamber. Elsewhere at the Bell Aircraft Corporation, top men had been working concurrently on the Airacomet, which was the first American jet-powered plane ever to take to the skies.

In the name of national defense, GE gave their plans to other manufacturers like Allison to encourage widespread growth. Lockheed’s F-80 Shooting Star, the first operational jet fighter, flew in June 1944 under the power of an Allison J-33 with a remarkable 4,000 pounds of thrust.

GE started a school for future jet engineers and technicians with the primary lesson being the principles of propulsion. The jet engine developed rapidly from this point on.

Continue reading “Retrotechtacular: The Jet Story”