Building A Bicycle Dash Cam With Advanced Capabilites

Riding a bicycle is a wonderful and healthy way to get around. However, just like with any other vehicle on the road, it can be useful to have a camera to record what goes on in traffic. [Richard Audette] built just such a rig.

The original setup relies on a Raspberry Pi 3, which takes a photo every 10 seconds using the attached Pi Camera. It then processes these photos using OpenALPR, which is a piece of software for reading licence plates. Licence plates detected while cycling can be stored on the Raspberry Pi for later, something which could be useful in the event of an accident.

However, [Richard] has developed the concept further since then. The revised dashcam adds blind spot detection for added safety, and uses a Luxonis OAK-D camera which provides stereo depth data and has AI acceleration onboard. It’s paired with a laptop carried in a backpack instead of a Raspberry Pi, and can stream video to a smartphone sitting on the handlebars as a sort of rear-view mirror.

Anyone who has commuted on a bicycle will instantly see the value in work like [Richard]’s. Just avoiding one accident from a car coming from behind would be of huge value, and we’re almost surprised we don’t see more bicycle rear view kits in the wild.

Alternatively, if you just want to scan your surroundings as you ride, consider building a landscape scanner instead. Video after the break.

Continue reading “Building A Bicycle Dash Cam With Advanced Capabilites”

Hackaday Podcast 087: Sound-Shattering Gliders, Pressing Dashcam Buttons, And Ratcheting Up Time

Hackaday editors Mike Szczys and Elliot Williams dish up a hot slice of the week’s hardware hacks. We feature a lot of clocks on Hackaday, but few can compare to the mechanical engineering elegance of the band-saw-blade-based ratcheting clock we swoon over on this week’s show. We’ve found a superb use of a six-pin microcontroller, peek in on tire (or is that tyre) wear particles, and hear the sounds of 500 mph RC gliders. It turns out that 3D printers are the primordial ooze for both pumping water and positioning cameras. This episode comes to a close by getting stressed out over concrete.

Take a look at the links below if you want to follow along, and as always, tell us what you think about this episode in the comments!

Take a look at the links below if you want to follow along, and as always, tell us what you think about this episode in the comments!

Direct download (60 MB or so.)

Continue reading “Hackaday Podcast 087: Sound-Shattering Gliders, Pressing Dashcam Buttons, And Ratcheting Up Time”

Panning GoPro Mount Catches Bad Drivers On Video

gopro-mount

[Chris] must live in a neighborhood with a lot of bad drivers. He built this motorized panning GoPro mount so he can record and share his neighbors’ mobile misadventures with the world. He started with a custom machined aluminum frame. The frame clips onto a suction cup mount grab bar. The stock GoPro mount sits on a machined HDPE puck, which is rotated by a NEMA 11 stepper motor. [Chris] used a Pololu A4988 stepper motor driver to handle the coils. Initially he used an Arduino to generate pulses for the stepper driver. A true Hackaday fan though, he decided that an Arduino was overkill, and broke out a 555 timer. A DPDT switch powers up the 555 and controls the stepper driver’s direction input. The electronics all fit neatly in a small project box which doubles as a hand controller.

While setting up for a test drive [Chris] found that he could only lock down one suction cup on his car’s curved sunroof. Considering the light weight of the GoPro, one suction cup is probably enough. Just to be safe, [Chris] added a rope leash down through the sunroof.

We think the stepper motor was a good choice for this project. Since the motor is direct drive, there are no gears to strip. The stepper’s holding torque also keeps the camera pointed in the right direction at highway speeds. With no wires directly connecting the GoPro to the car, [Chris] can spin the camera 360 degrees without worrying about tangles. Verifying the camera’s direction is just a matter of looking up through the car’s sunroof. Click past the break to see [Chris’s] camera mount in action. 

Continue reading “Panning GoPro Mount Catches Bad Drivers On Video”