Ants, Dirt, Rain, And The Commodore 64 That Wouldn’t Quit

Some electronics gear is built for the roughest conditions. With rugged steel cases, weatherproof gaskets, and cables passing through sealed glands, these machines are built to take the worst that Mother Nature can throw at them, shrugging off dust, mud, rain, and ice. Consumer-grade computers from the start of the home PC era, however, are decidedly not such machines.

Built to a price point and liable to succumb to a spilled Mountain Dew, few machines from that era that received any kind of abuse lived to tell the tale. Not so this plucky Commodore 64C, which survived decades exposed to the elements. As [Adrian Black] relates in the video below, this machine was on a scrap heap in an Oregon field, piled there along with other goodies by one of those “pickers” that reality TV loves so much. The machine was a disaster. It hadn’t been soaked in oil, but it was loaded with pine needles and an ant colony. The worst part, though, was the rust. The RF shielding had corroded into powder in some places, leaving reddish rust stains all over the place. Undeterred, [Adrian] gave the machine a good bath, first in water, then in isopropanol. Liberal applications of Deoxit helped with header connections, enough to see that the machine miraculously booted. It took some finagling, especially with the 6526 I/O controller, but [Adrian] was eventually able to get everything on the motherboard working, even the sound chip.

Whether this machine survived due to good engineering or good luck is debatable, but it’s a treat to see it come back to life. We hope a full restoration is in the works, not least as a way to make up for the decades of neglect.

Continue reading “Ants, Dirt, Rain, And The Commodore 64 That Wouldn’t Quit”

This Way to the Ingress: Keeping Stuff Dry and Clean with IP and NEMA

When designing a piece of hardware that has even the faintest chance of being exposed to the elements, it’s best to repeat this mantra: water finds a way. No matter how much you try to shield a project from rain, splashing, or even just humid air, if you haven’t taken precautions to seal your enclosure, I’ll bet you find evidence of water when you open it up. Water always wins, and while that might not be a death knell for your project, it’s probably not going to help. And water isn’t the only problem that outdoor or rough-service installations face. Particle intrusion can be a real killer too, especially in an environment where dust can be conductive.

There’s plenty you can do to prevent uninvited liquid or particulate guests to your outdoor party, but it tends to be easier to prevent the problem at design time than to fix it after the hardware is fielded. So to help you with your design, here’s a quick rundown of some standards for protection of enclosures from unwanted ingress.

Continue reading “This Way to the Ingress: Keeping Stuff Dry and Clean with IP and NEMA”

HALT In The Name Of Testing

“Did I forget something?” It’s that nagging feeling every engineer has when their project is about to be deployed – it may be a product about to be ramped into production, a low volume product, or even a one off like a microsatellite. If you have the time and a few prototypes to spare though, there are ways to alleviate these worries. The key is a test method which has been used in aerospace, military, and other industries for years – Highly Accelerated Life Testing (HALT).

How to HALT

The idea behind HALT testing can be summed up in a couple of sentences:

  • Beat your product to death.
  • Figure out what broke.
  • Fix it, and fix the design.
  • Repeat.

Sounds barbaric, and in many cases it is. HALT testing is often associated with giant test chambers which are literally designed to torture anything inside them. Liquid nitrogen shock cools the chamber as low as -100°C. The Device Under Test (DUT) can soak at that temperature for hours. Powerful heaters then blast the chamber, causing temperature rises of up to 90°C per minute, topping off at up to 200°C. Pneumatic hammers beat on the chamber table causing vibrations at up to 90 Grms and 10 KHz. Corrosive sprays simulate years of rain and humidity. These chambers are literally hell on earth for any device unlucky enough to be placed inside them. It’s easy to see why this sort of testing is often referred to as “Shake and Bake”.

Continue reading “HALT In The Name Of Testing”