Small Life On A Character LCD

[Duality] just finished programming Conway’s Game of Life on a character LCD. The game is a great programming exercise that everyone should undertake at one point or another. It uses a very simple set of rules to evolve the playing area from a given starting state. In this case the game grid is only 64 pixels, one for each of the positions on this 16×2 character LCD screen. This makes for very quick games as the cells tend to quickly reach an equilibrium as they arrive at the outer borders. See for yourself in the clip after the break.

We could have sworn we’ve seen this before, but with four times the playing space thanks to some custom characters. We couldn’t find an example of that, but the idea is to use a larger grid (something more like what’s seen on this graphic LCD) by generating a set of custom characters that slices each 5×8 pixel character into four smaller discrete areas. Something along the lines of what is being done with this spectrum analyzer.

Continue reading “Small Life On A Character LCD”

Large Remote-controlled Game Of Life Display

game_of_life

Sometimes it’s just plain fun to over-engineer. [Stephanie] gets a warm fuzzy feeling when she successfully adds way more electronics components to a project than she really needs – just because she can. We can’t really argue with her if that is the intended goal, nor can we find fault with the sweet Game of Life display she put together.

She started off with six Game of Life kits from Adafruit, but she quickly caught the LED bug and her collection grew until she had 20 kits (that’s 320 LEDs for those of you keeping count). After piecing them all together, they were mounted in a wooden frame and placed behind a dark piece of acrylic. It looked great and worked just fine, but it wasn’t overdone enough for her tastes.

In the end, she added a small Arduino and Xbee module to the Game of Life display, which enables it to be controlled by her network-enabled thermostat we featured a few weeks back. The thermostat was fitted with an Xbee unit as well, which allows it to turn the Game of Life on and off at whatever times [Stephanie] specifies.

We’ll take two please.

[via Adafruit Blog]

Music Synthesized From The Game Of Life

gameoflife_synth

[vtol] has built a very elaborate system of electronic sound machines, which can be patched together in various ways in order to create all sorts of sounds and sound effects. The modules range from simple noise synthesizers to pitch shifters, sequencers, and effects processors. The most recent addition to his synthesizer system is a matrix sequencer named 2112, which focuses on generating random sounds from a very familiar mechanism.

The sequencer simulates Conway’s Game of Life, representing the colony movements in beeps and buzzes, creating a nearly infinite array of random sound effects. Using firmware from the Game of Life board by Ladyada, the sequencer generates different sound patterns based upon the number of colonies on the board. The output varies according to the shapes and proximity of the organisms to one another. Since it is part of his already modular system, the 2112 board can be combined with any number of his other sound generators and effects machines to make all sorts of circuit bent music.

Keep reading to check out the trio of videos below demonstrating the Game of Life board in action.

Continue reading “Music Synthesized From The Game Of Life”

Needs More LEDs, EMSL Biggified Conway’s Game Of Life

Evil Mad Scientist Laboratories has proven bigger is better with their colossal LED table running Conway’s Game of Life. At the heart of the system is 44 ATmega164Ps controlling 352 LEDs on a 32×44 inch table; and to make it interactive IR LEDs detect the presence of objects.

The display is set up as an exhibit at the San Jose Museum of Art in tribute to [Leo Villareal]. To see a demo, catch a video after the divide.

Related: Colossal LED tables, and Conway’s Game of Life. Why has it taken so long to combine them?

Continue reading “Needs More LEDs, EMSL Biggified Conway’s Game Of Life”

LED Life And Charlieplexing


Yesterday, we featured [Andrew]’s orientation aware camera. We want to highlight another one of his projects: LED Life. It’s a 6×5 LED matrix playing Conway’s Game of Life. He used the low power MSP430 like our e-paper clock. The best part of the writeup is his explanation of how Charlieplexing works. Microcontroller GPIO pins generally have three possible states: output high, output low, and input. This combined with the directional nature LEDs and some creative wiring means you can run a large matrix of individually addressable LEDs with just a few IO pins. Instead of just flipping the IO pins on and off you change their assigned state. Have a look at [Andrew]’s site for some great illustrations of how the system works. A video of his LED Life board is embedded below. Continue reading “LED Life And Charlieplexing”