Pavement Projection Provides Better Bicycle Visibility At Night

Few would question the health benefits of ditching the car in favor of a bicycle ride to work — it’s good for the body, and it can be a refreshing relief from rat race commuting. But it’s not without its perils, especially when one works late and returns after dark. Most car versus bicycle accidents occur in the early evening, and most are attributed to drivers just not seeing cyclists in the waning light of day.

To decrease his odds of becoming a statistics and increase his time on two wheels, [Dave Schneider] decided to build a better bike light. Concerned mainly with getting clipped from the rear, and having discounted the commercially available rear-mounted blinkenlights and wheel-mounted persistence of vision displays as insufficiently visible, [Dave] looked for ways to give drivers as many cues as possible. Noticing that his POV light cast a nice ground effect, he came up with a pavement projecting display using four flashlights. The red LED lights are arranged to flash onto the roadway in sequence, using the bike’s motion to sweep out a sort of POV “bumper” to guide motorists around the bike. The flashlight batteries were replaced with wooden plugs wired to the Li-ion battery pack and DC-DC converter in the saddle bag, with an Arduino tasked with the flashing duty.

The picture above shows a long exposure of the lights in action, and it looks very effective. We can’t help but think of ways to improve this: perhaps one flashlight with a servo-controlled mirror? Or variable flashing frequency based on speed? Maybe moving the pavement projection up front for a head-down display would be a nice addition too.

Ground-Effect Lighting For Your Bed.

If you’ve ever disturbed your partner by getting up during the night and flicking on the bathroom light — or tripping over something and startling them awake completely in the ensuing catastrophe — [Kristjan Berce]’s idea to install motion-activated ground-effect lighting on his girlfriend’s bed might hold your attention.

[Berce] is using an Arduino Nano for the project’s brain, a PIR sensor from Adafruit, and an L7805 voltage regulator to handle load spikes.  He doesn’t specify the type of LED strip he’s using, but Neopixels might be a safe bet here. Soldering issues over with, he mounted his protoboard in a 3D printed project box. Instead of reinventing the LED, [Berce] copied the code from Adafruit’s PIR tutorial before sticking the project to the side of the bed with adhesive strips so the on/off switch within handy reach to flick before meeting Mr. Sandman. Check out the build video after the break!

Continue reading “Ground-Effect Lighting For Your Bed.”

Repaired Manned Multicopter Flies Without Horrifying Crash

[amazingdiyprojects] has been making lots of test flights in his crazy eight propeller gasoline powered danger bucket.

We last covered the project when he had, unfortunately, wrecked the thing in a remote-controlled test flight.  He later discovered that the motor’s crankshaft bearings had, well, exploded. The resulting shrapnel destroyed the motor and crashed the drone. He described this failure mode as “concerning”.

Also concerning is the act of stepping into the seat once all the propellers are started up. He tags this as “watch your step or die”. Regardless, he also describes flying in the thing as so incredibly fun that it’s hard to stay out of it; like a mechanical drug. It explains why his channel has been lately dominated by videos of him testing the multicopter. Those videos are found after the break.

The device drinks 0.65-0.7 liters per minute of gasoline, and he’s been going through reserves working out all the bugs. This means everything from just figuring out how to fly it to discovering that the dust from the ground effect tends to clog up the air filters; which causes them to run lean, subsequently burning up sparkplugs. Dangerous, but cool.

Continue reading “Repaired Manned Multicopter Flies Without Horrifying Crash”

Solar Powered Hovercraft

SONY DSC

It looks a little bit like an octocopter, but this solar-powered hovercraft is distinctly different from its free-flying brethren. It depends mostly on ground effect for operation and to get it just a bit into the air you need a pretty large reflective rig nearby.

The vehicle needs to be even lighter than traditional quadcopters in order to function. It doesn’t carry any battery at all which presents a problem when trying to program the microcontroller board. For this it is connected to an external battery, which is removed before flight so that the control can be powered from the solar array.

What’s not shown in the image above is a mirror array used to focus more intense sunlight on the panels to bump up the available electricity. Not much is said about this, but there is one image on the project page which shows the creator standing in front of the set of four mirrors (perhaps sheets of mylar?) strung up between a couple of trees.

Alas, we couldn’t find a video of the aircraft in action. With such a delicate balsa wood frame we’re sure this thing is affected by every air current that passes its way.

[Thanks Laimonas]