NASA Taps Lockheed To Bring Back A Piece Of Mars

Since NASA’s Mariner spacecraft made the first up-close observations of Mars in 1964, humanity has lobbed a long line of orbiters, landers, and rovers towards the Red Planet. Of course, it hasn’t all been smooth sailing. History, to say nothing of the planet’s surface, is littered with Martian missions that didn’t quite make the grade. But we’ve steadily been getting better, and have even started to push the envelope of what’s possible with interplanetary robotics through ambitious craft like the Ingenuity helicopter.

Yet, after nearly 60 years of studying our frigid neighbor, all we have to show for our work boils down to so many 1s and 0s. That’s not to say the data we’ve collected, both from orbit and on the surface, hasn’t been extremely valuable. But scientists on Earth could do more with a single Martian rock than any robotic rover could ever hope to accomplish. Even still, not so much as a grain of sand has ever been returned from the planet’s dusty surface.

But if everything goes according to plan, that’s about to change. Within the next decade, NASA and the European Space Agency (ESA) hope to bring the first samples of Martian rocks, soil, and atmospheric gases back to Earth using a series of robotic vehicles. While it’s still unclear when terrestrial scientists should expect delivery of this interplanetary bounty, the first stage of the program is already well underway. The Perseverance rover has started collecting samples and storing them in special tubes for their eventual trip back to Earth. By 2028, another rover will be deployed to collect these samples and load them into a miniature rocket for their trip to space.

Launching the Mars Ascent Vehicle (MAV).

Just last week NASA decided to award the nearly $200 million contract to build that rocket, known officially as the Mars Ascent Vehicle (MAV), to aerospace giant Lockheed Martin. The MAV will not only make history as the first rocket to lift off from a celestial body other than the Earth, but it’s arguably the most critical component of the sample return mission; as any failure during launch will mean the irrevocable loss of all the samples painstakingly recovered by Perseverance over the previous seven years.

To say this mission constitutes a considerable technical challenge would be an understatement. Not only has humanity never flown a rocket on another planet, but we’ve never even attempted it. No matter what the outcome, once the MAV points its nose to the sky and lights its engines, history is going to be made. But while it will be the first vehicle to make the attempt, engineers and scientists have been floating plans for a potential Martian sample return mission for decades. Continue reading “NASA Taps Lockheed To Bring Back A Piece Of Mars”

Robotic Fruit Fly Won’t Eat Your Fruit

The DelFly project has been busy since the last time we checked in on them. The Dutch team started 13 years ago and produced the smallest camera-carrying drone, and an autonomous tiny ornithopter. However, that ornithopter — now five years old — had to use some traditional control surfaces and a tail like an airplane which was decidedly not fruit fly-like. Now they’ve solved those problems and have announced the DelFly Nimble, a 13 inch and 1-ounce ornithopter. You can see the Nimble in the video below.

The close emulation of a real fly means the thing looks distinctly insect-like in flight. The dual wings use Mylar and form an X configuration. They flap about 17 times per second. A fully charged battery  — remember, the whole thing weighs an ounce — lasts five minutes. With an efficient speed of 3 meters per second, the team claims a flight range of over 1 kilometer with a peak speed that can reach  7 meters per second. It can even take a payload, as long as that payload weighs 4 grams or less.

Continue reading “Robotic Fruit Fly Won’t Eat Your Fruit”

The World’s First Autonomous Flapping MAV

Screen Shot 2013-12-22 at 7.57.23 PM

[Ferdinand] sent in a tip about the very cool DelFly Explorer, built by researchers at Netherlands’ Delft University of Technology, which is claimed to be the world’s first autonomous, flapping micro air vehicle. While it doesn’t fly like a typical ornithopter, the specs will convince you not to care. It has an 28 cm wingspan and weighs 20 grams, which includes motors, a battery, two cameras, and an autopilot. The autopilot uses accelerometers and a gyroscope, plus a barometer for altitude measurement. You can see the on-board video at the 35-second mark on the video (after the break). They are incredibly noisy images, but apparently the researchers have come up with some algorithms that can make sense of it.

Put it all together, and you have a machine that can take off, maintain altitude, avoid obstacles, and fly for nine minutes. We’ve seen a cool ornithopter design before, and even a thrust vectoring plane, but this surpasses both projects. It’s pretty incredible what they have been able to fit into such a small design.

Continue reading “The World’s First Autonomous Flapping MAV”