Bone Filament, For Printing Practice Bones

Of course there is bone-simulation filament on the market. What’s fun about this Reddit thread is all of the semi-macabre concerns of surgeons who are worried about its properties matching the real thing to make practice rigs for difficult surgeries. We were initially creeped out by the idea, but now that we think about it, it’s entirely reassuring that surgeons have the best tools available for them to prepare, so why not 3D prints of the actual patient’s bones?

[PectusSurgeon] says that the important characteristics were that it doesn’t melt under the bone saw and is mechanically similar, but also that it looks right under x-ray, for fluorscopic surgery training. But at $100 per spool, you would be forgiven for looking around for substitutes. [ghostofwinter88] chimes in saying that their lab used a high-wood-content PLA, but couldn’t say much more, and then got into a discussion of how different bones feel under the saw, before concluding that they eventually chose resin.

Of course, Reddit being Reddit, the best part of the thread is the bad jokes. “Plastic surgery” and “my insurance wouldn’t cover gyroid infill” and so on. We won’t spoil it all for you, so enjoy.

When we first read “printing bones”, we didn’t know if they were discussing making replacement bones, or printing using actual bones in the mix. (Of course we’ve covered both before. This is Hackaday.)

Thanks [JohnU] for the tip!

The Rise Of The Disappearing Polymorphs

Science and engineering usually create consistent results. Generally, when you figure out how to make something, you can repeat that at will to make more of something. But what if, one day, you ran the same process, and got different results? You double-checked, and triple-checked, and you kept ending up with a different end product instead?

Perhaps it wasn’t the process that changed, but the environment? Or physics itself? Enter the scary world of disappearing polymorphs.

Continue reading “The Rise Of The Disappearing Polymorphs”

Slime Mold-Powered Smart Watches See Humans Fall In Love With The Goo

Humans are very good at anthropomorphising things. That is, giving them human characteristics, like ourselves. We do it with animals—see just about any cartoon—and we even do it with our own planet—see Mother Nature. But we often extend that courtesy even further, giving names to our cars and putting faces on our computers as well.

A recent study has borne this out in amusing fashion. Researchers at the University of Chicago found that human attitudes towards a device can change if they are required to take actions to look after it. Enter the slime mold smartwatch, and a gooey, heartwarming story of love and care between human and machine, mediated by mold.

Continue reading “Slime Mold-Powered Smart Watches See Humans Fall In Love With The Goo”

British Hospital Blasts Through Waiting Lists By Slashing Surgeon Downtime

It feels like it doesn’t matter where you go, health systems are struggling. In the US, just about any procedure is super expensive. In the UK and Australia, waiting lists extend far into the future and patients are left sitting in ambulances as hospitals lack capacity. In France, staff shortages rage furiously, frustrating operations.

It might seem like hope is fruitless and there is little that can be done. But amidst this horrid backdrop, one London hospital is finding some serious gains with some neat optimizations to the way it handles surgery, as The Times reports.

Continue reading “British Hospital Blasts Through Waiting Lists By Slashing Surgeon Downtime”

Radioactive Water Was Once A (Horrifying) Health Fad

Take a little time to watch the history of Radithor, a presentation by [Adam Blumenberg] into a quack medicine that was exactly what it said on the label: distilled water containing around 2 micrograms of radium in each bottle (yes, that’s a lot.) It’s fascinatingly well-researched, and goes into the technology and societal environment surrounding such a product, which helped play a starring role in the eventual Food, Drug, and Cosmetic Act of 1938. You can watch the whole presentation in the video, embedded below the break. Continue reading “Radioactive Water Was Once A (Horrifying) Health Fad”

MIT Engineers Pioneer Cost-Effective Protein Purification For Cheaper Drugs

There are a wide variety of protein-based drugs that are used to treat various serious conditions. Insulin is perhaps the most well-known example, which is used for life-saving treatments for diabetes. New antibody treatments also fall into this category, as do various vaccines.

A significant cost element in the production of these treatments is the purification step, wherein the desired protein is separated from the contents of the bioreactor it was produced in. A new nanotech discovery from MIT could revolutionize this area, making these drugs cheaper and easier to produce.

Continue reading “MIT Engineers Pioneer Cost-Effective Protein Purification For Cheaper Drugs”

New Drug Has Potential As Dirty Bomb Antidote

It perhaps goes without saying that one nuclear bomb can really ruin your day. The same is true for non-nuclear dirty bombs, which just use conventional explosives to disperse radioactive material over a wide area. Either way, the debris scattered by any type of radiation weapon has the potential to result in thousands or perhaps millions of injuries, for which modern medicine offers little in the way of relief.

HOPO 14-1, aka 3,4,3-Li(1,2-HOPO). The four hydroxypyridinone groups do the work of coordinating radioactive ions and making them soluble so they can be eliminated in urine.

But maybe not for long. A Phase 1 clinical trial is currently underway to see if an oral drug is able to scour radioactive elements from the human body. The investigational compound is called HOPO 14-1, a chelating agent that has a high affinity for metals in the actinide series, which includes plutonium, uranium, thorium, and cerium curium. Chelating agents, which are molecules that contain a multitude of electron donor sites, are able to bind to positively charged metal ions and make the soluble in aqueous solutions. Chelators are important in food and pharmaceutical processing — read the ingredients list on just about anything from a can of soda to a bottle of shampoo and you’re likely to see EDTA, or ethylenediaminetetraacetic acid, which binds to any metal ions that make it into the product, particularly iron ions that come from the stainless steel plumbing used in processing equipment.

The compound under evaluation, HOPO 14-1, is a powerful chelator of metal ions. Its structure is inspired by natural chelators produced by bacteria and fungi, called siderophores, which help the microorganisms accumulate iron. Its mechanism of action is to sequester the radioactive ions and make them soluble enough to be passed out of the body in the urine, rather than to have the radioactive elements carried around the body and incorporated into the bones and other tissues where they can cause radiation damage for years.

HOPO 14-1 has a number of potential benefits over the current frontline chelator for plutonium and uranium toxicity, DTPA or diethylenetriaminepentaacetic acid. Where DTPA needs to be injected intravenously to be effective, HOPO 14-1 can be made into a pill, making stockpiling and administering the drug easier. If, of course, it passes Phase 1 safety trials and survives later trials to determine efficacy.