Sneaky Fix Gets Simon Back Up And Running

Simon was a cutting-edge “computer controlled game” when it launched back in 1978. It would flash out a pattern of ever-increasing length and you had to copy it if you didn’t want to lose. The name, obviously inspired by the traditional folk game of Simon Says. [Robert] recently found an original vintage Simon game, but it had been non-functional for many years. However, with some astute analysis and repair, he was able to get it working again.

Upon powering the unit up, the best [Robert] could get out of it was some flickering of the lights, nothing more. It wouldn’t start a game or respond to button presses. Eventually, probing around showed [Robert] that the TMS1000 microcontroller wasn’t running properly.  It seemed to concern the connection to the “Game Mode” selector switch. Thanks to a fault and the multiplexed layout of the controls, it was appearing to the microcontroller that a button was always pressed at all times.

The solution [Robert] landed on was to separate out the signal from the Game Mode switch by socketing the TMS1000 and lifting the relevant pin. . The signal was then wired back up to the chip via diodes so that it wouldn’t interfere with the other outputs and inputs on the chip used to read the other buttons. This meant that the unit was locked into the single main game mode, but it did get it operational again.

It may not be a complete repair, but it nonetheless saved this unit from complete failure. Failing a repair of your own unit, you can always build one with modern hardware instead. Video after the break.

Continue reading “Sneaky Fix Gets Simon Back Up And Running”

Bioluminescent Glowing Petunias Are Now A Thing

Outside of the depths of the ocean, or cartoons, we’re not typically accustomed to plant life glowing or otherwise generating its own light. However, science is helping to change all that. Now, you can order some bioluminescent plants of your very own from Light Bio.

Light Bio is a startup company working in the synthetic biology space. It’s not content to simply pursue research behind closed doors, and is now sharing its work with the public. It has announced it plans to start selling petunias to U.S. customers which literally glow with the magic of bioluminescence.

Petunias don’t normally glow, but with some modifications, it turns out they can be convinced to. It took a large team of 26 scientists to figure out how to boost bioluminescence in plants, by isolating and optimizing genes sourced from various glowing mushroom species.

The plants will be available from April, with Light Bio planning to sell them as “Firefly Petunias.” It might sound like scary sci-fi tech, but the USDA has apparently already signed off on Light Bio selling these to the public.

Something’s been bothering me, though. It’s at the edge of my memory… I think my old housemate played bass for Glowing Petunias back in 2015. Something like that, anyway… video after the break.

Continue reading “Bioluminescent Glowing Petunias Are Now A Thing”

A white man with red hair in pigtails under a brown cap holds an axe with a black head and wooden handle. The axe has a rectangular box welded onto the back side of its trapezoidal head.

Deadblow Axe Splits Wood With Minimal Rebound

Dead-blow hammers are well-known in the construction industry for minimizing rebound. [Jacob Fischer] is on a mission to bring this concept to splitting axes.

Over the course of several months, [Fischer] has been working on adding a dead-blow to a splitting axe. This fifth iteration uses a custom-forged head from blacksmith [Todd Elder] with a dead-blow box welded to the poll. The combination of the head geometry and the dead-blow distributing the delivery of force seems to result in a very effective splitting axe.

The dead-blow portion of the axe is a steel box filled with lead (Pb) BBs. Since the BBs are trailing the axe head within the box, the force from the BBs is delivered later than the initial impact of the steel axe head onto the block of wood, allowing the full force of the blow to be spread out over more time. Dead-blow hammers typically use polymers to further absorb any rebound energy, so there is some limit to the extent rebound can be reduced as seen in the testing portion of the video.

Looking for other ways to split wood? How about this cross-bladed axe or maybe a log splitter or two? If you’re curious about how they used to make axes in the old days, we’ve got you covered there too.

Continue reading “Deadblow Axe Splits Wood With Minimal Rebound”

Sonolithography With The Raspberry Pi Pico

You can do some wild things with sound waves, such as annoy your neighbours or convince other road users to move out of your way. Or, if you get into sonolithography like [Oliver Child] has, you can make some wild patterns with ultrasound.

Sonolithography is a method of patterning materials on to a surface using finely-controlled sound waves. To achieve this, [Oliver] created a circular array of sixteen ultrasonic transducers controlled via shift registers and gate driver ICs, under the command of a Raspberry Pi Pico. He then created an app for controlling the transducer array via an attached computer with a GUI interface. It allows the phase and amplitude of each element of the array to be controlled to create different patterns.

Creating a pattern is then a simple matter of placing the array on a surface, firing it up in a given drive mode, and then atomising some kind of dye or other material to visualize the pattern of the acoustic waves.

It could be a useful tool for studying the interactions of ultrasonic waves, or it could just be a way to make neat patterns in ink and dye if that’s what you’re into. [Oliver] notes the techniques of sonolithography could also have implications in biology or fabrication in future, as well. If you found this interesting, you might like to study up on ultrasonic levitation, too!

Change The Jingle In Your Makita Charger Because You Can

Lots of things beep these days. Washing machines, microwaves, fridge — even drill battery chargers. If you’re on Team Makita, it turns out you can actually change the melody of your charger’s beep, thanks to a project from [Real-Time-Kodi].

The hack is for the Makita DR18RC charger, and the implementation of the hack is kind of amusing. [Real-Time-Kodi] starts by cutting the trace to the buzzer inside the charger. Then, an Arduino is installed inside the charger, hooked up to the buzzer itself and the original line that was controlling it. When it detects the charger trying to activate the buzzer, it uses this as a trigger to play its own melody on the charger instead. The Arduino also monitors the LEDs on the charger in order to determine the current charge state, and play the appropriate jingle for the situation.

It’s an amusing hack, and one that could certainly confuse the heck out of anyone expecting the regular tones out of their Makita charger. It also shows that the simple ways work, too — there was no need to dump any firmware or decompile any code.

Continue reading “Change The Jingle In Your Makita Charger Because You Can”

Slime Mold-Powered Smart Watches See Humans Fall In Love With The Goo

Humans are very good at anthropomorphising things. That is, giving them human characteristics, like ourselves. We do it with animals—see just about any cartoon—and we even do it with our own planet—see Mother Nature. But we often extend that courtesy even further, giving names to our cars and putting faces on our computers as well.

A recent study has borne this out in amusing fashion. Researchers at the University of Chicago found that human attitudes towards a device can change if they are required to take actions to look after it. Enter the slime mold smartwatch, and a gooey, heartwarming story of love and care between human and machine, mediated by mold.

Continue reading “Slime Mold-Powered Smart Watches See Humans Fall In Love With The Goo”

Hackaday Podcast Episode 258: So Much Unix, Flipper Flip-out, And The Bus Pirate 5

Hackaday Editors Elliot Williams and Tom Nardi discuss all the week’s best and most interesting hacks and stories, starting with Canada’s misguided ban on the Flipper Zero for being too spooky. From there they’ll look at the state-of-the-art in the sub-$100 3D printer category, Apple’s latest “Right to Repair” loophole, running UNIX on the NES (and how it’s different from Japan’s Famicom), and the latency of various wireless protocols.

After singing the praises of the new Bus Pirate 5, discussion moves on to embedded Linux on spacecraft, artfully lifting IC pins, and the saga of the blue LED. Finally you’ll hear the how and why behind electrical steel, and marvel at a Mach 10 missile that (luckily) never needed to be used.

Grab a copy for yourself if you want to listen offline.

Continue reading “Hackaday Podcast Episode 258: So Much Unix, Flipper Flip-out, And The Bus Pirate 5”