Möbius Tank’s Twisty Treads Became Bendy

[James Bruton]’s unusual Möbius Tank has gotten a little more unusual with the ability to bend itself, which allows it to perform turns even though it is a single-track vehicle.

The turning radius isn’t great, but three-point turns are perfectly feasible.

The Möbius Tank was a wild idea that started as a “what if” question: what if a tank tread was a Möbius strip? We saw how [James] showed it could be done, and he demonstrated smart design and assembly techniques in the process.

He’s since modified the design to a single-track, and added a flex point in the center of the body. Two linear actuators work together to make the vehicle bend, and therefore give it the ability to steer and turn. A normal tread would be unable to bend in this way, but the twist in the Möbius tread accommodates this pivot point perfectly well.

It works, but it’s not exactly an ideal vehicle. With the tread doing a 90-degree twist on the bottom, there isn’t a lot of ground clearance. In addition, since the long vehicle has only a single tread, it is much taller than it is wide. Neither does it any real favors when it comes to stability over uneven terrain, but it’s sure neat to try.

Even if it’s not practical, Möbius Tank is wild to look at. Check it out in the video, embedded just under the page break.

Continue reading “Möbius Tank’s Twisty Treads Became Bendy”

Behold The Track-Twisting Möbius Tank

It started with someone asking [James Bruton] about using a Möbius strip as a tank tread. He wasn’t sure what the point would be, but he was willing to make one and see what happened. Turns out it works reasonably well!

The grey plates are responsible for tensioning the tracks. Designing them as separate pieces means rework for fine-tuning avoids having to re-print structural parts.

The main design challenge was creating a tread system that would allow for the required rotation. [James] designed in the ability for each link to rotate about 18 degrees, and ensured plenty of open space on the upper side of the drive train to accommodate a full 180 degree twist. It took a little fine-tuning and looks a bit trippy, but in the end works about as well as a regular tread system.

[James] shows off a good technique to keep in mind when constructing big assemblies like this tank. It takes a lot of time and material to print large pieces, and in such cases it’s especially important to minimize rework. [James] therefore designs smaller, separate pieces as interfaces to other parts. This way, if changes are needed down the line (for example, to adjust motor placement or change tension on parts), only a smaller interface piece needs to be redone instead of having to re-print a huge part.

The unit uses an Arduino Mega, two 24 V gearmotors to drive each tread independently, an RC radio receiver, and some beefy BTS7960 DC motor drivers to drive the motors.

[James]’ unit is pretty big, but we’ve also seen 3D printed tanks capable of carrying a human driver. It’s clear that build plate size doesn’t seem to limit tank designs. Watch the Möbius tank get built and drive around in the video, just below the page break.

Continue reading “Behold The Track-Twisting Möbius Tank”

3D-Printed Mobius Strip Of Gears

Exploring the mathematics behind everyone’s favourite unorientable single-sided surface can be quite the mind-bending exercise, so it’s nice that it’s so easy to make a Mobius strip out of paper and a single piece of tape. That demonstration was far from enough for [elmins]. who printed this Mobius strip of gears. The teeth fit together, and all the gears move, but there is still only one side and one edge (we think).

This animation helped spawn the project.

The idea to tackle the project came from seeing an animation of Mobius gears. Wondering if it would be possible to actually create such a thing, [elmins] got to work. The design is printed in 60 pieces, 30 each for the inner and outer parts. The entire assembly is printed in PETG, an unconventional choice but by no means unsuitable. 285 ball bearings help the rings rotate.

The gears use a standard involute bevel profile, though [elmins] suspects this could be an area of further optimisation. The parts were printed in an orientation to ensure the print lines run around the races, allowing for minimal finishing and smooth rolling of the bearings. This is a good study of just what can be achieved with some smart modelling and perseverance.

If you’re thirsty for more madcap machining, consider exploring the concept of the Reuleaux triangle bearing.