The M1 NerfBot: When Prototypes Evolve

What do you get when you cross a self-taught maker with an enthusiasm for all things Nerf? A mobile nerf gun platform capable of 15 darts per second. Obviously.

The M1 NerfBot built by [GrimSkippy] — posting in the ‘Let’s Make Robots’ community — is meant to be a constantly updating prototype as he progresses in his education. That being the case, the progress is evident; featuring two cameras — a webcam on the turret’s barrel, and another facing forward on the chassis, a trio of ultrasonic sensors, controlled by an Xbox 360 controller, and streaming video to a webpage hosted on the M1 itself, this is no mere beginner project.

Perhaps most compelling is how the M1 tracks its targets. The cameras send their feeds to the aforementioned webpage and — with a little reorganization — [GrimSkippy] accesses the the streams on an FPV headset-mounted smartphone. As he looks about, gyroscopic data from the phone is sent back to the M1, translating head movement into both turret and chassis cam movement. Check it out!

Continue reading “The M1 NerfBot: When Prototypes Evolve”

Fully 3D Printed Nerf Thirst Zapper

In case you weren’t aware, there is a whole community out there that revolves around customizing NERF guns. In that community is a subculture that builds their own NERF guns, and within that group is a sub-subculture that 3D prints NERF guns. So next time you are contemplating how esoteric your little corner of the hacking world is, keep that in mind.

Anyway, [Wesker] is currently making his way in the world of 3D printed one-off NERF guns, and has unveiled his latest creation: a fully 3D printed “Thirst Zapper” from Fallout 4. Except for the springs, each and every piece of this gun was printed on his CR-10 printer. You could even wind your own springs if you really wanted to, and keep the whole thing in-house. Because if you’re going to do something this niche, you might as well go all in.

Even if you aren’t a member of the NERF-elite, the video [Wesker] has put together for this project is a fantastic look at what it takes to design, print, and finish a custom build. From creating the model to mixing the paint to match the in-game model, this video has a little something for everyone.

This isn’t the first time we’ve covered 3D printed NERF guns, but it’s surely the most ornate we’ve ever seen. Interestingly, the bar is set pretty high for Fallout-themed builds in general, so perhaps there’s some unwritten rule out there in regards to Fallout prop builds.

Continue reading “Fully 3D Printed Nerf Thirst Zapper”

Remote Controlled Nerf Bomb

There was a third-party multiplayer upgrade pack for one of the Quake games back in the ’90s that included a whole slew of non-standard weapons. Among them one of the most memorable was a gravity well, that when thrown into the middle of a crowded room full of warring players would suck them into a vortex. Assuming its user had made it to safety in time, they would then be left the victor. The hyper-violent make-believe world of a first-person shooter is probably best left in a Pentium server from the ’90s, with few direct parallels in the real world. Maybe laser tag, or Nerf battles, are the closest you’ll get.

If you are a Nerf enthusiast, then you’ll appreciate [Giaco Whatever]’s CO2-powered remote-control Nerf bomb as an analogue of that Quake gravity well. It fires twelve darts at the press of a button on an infra-red remote control. The firing tubes sit in a nicely machined manifold connected via a solenoid valve to a little CO2 gas bottle. In the hectic world of a Nerf war it is slid out into the field of combat, its operator takes cover, and the other participants are showered in foam darts. There are probably kids who would sell their grandparents to own this device.

The build is detailed in the video below the break, along with a wonderfully tongue-in-cheek movie segment demonstrating it in action.

Continue reading “Remote Controlled Nerf Bomb”

How Good Is Your Aim First Thing In The Morning?

For the less than highly-driven individuals out there — and even some that are — sometimes, waking up is hard to do, and the temptation to smash the snooze button is difficult to resist. If you want to force your mind to immediately focus on waking up, this Nerf target alarm clock might get you up on time.

Not content to make a simple target, [Christopher Guichet] built an entire clock for the project. The crux of the sensor is a piezoelectric crystal which registers the dart impacts, and [Guichet]’s informative style explains how the sensor works with the help of an oscilloscope. A ring of 60 LEDs with the piezoelectric sensor form the clock face, all housed in a 3D printed enclosure. A rotary encoder is used to control the clock via an Arduino Uno, though a forthcoming video will delve into the code side of things; [Guichet] has hinted that he’ll share the files once the code has been tidied up a bit.

Continue reading “How Good Is Your Aim First Thing In The Morning?”

Modified R/C Jet Cannon Spews Nerf, Slays Cardboard Tanks

[ajw61185] made a video overview of a radio-controlled A-10 jet modified to spew a hail of harmless Nerf balls as it strafes helpless cardboard cutouts of T-72 tanks on a bright, sunny day.

A10 Nerf LoadingThe firing assembly in the jet comes from a Nerf Rival Zeus Blaster, which is itself an interesting device. It uses two electric flywheels to launch soft foam balls – much like a pitching machine. With one flywheel running a little faster than the other, the trajectory can be modified. For example, a slight topspin gives the balls a longer and more stable flight path. Of course, foam balls slow down quickly once launched and at high speeds the aircraft can overtake the same projectiles it just fired, but it’s fun all the same.

Cramming the firing assembly into aircraft took some cleverness. The front of the jet contains the flywheel assembly, and a stripped-down removable magazine containing the foam balls fits behind it. A flick of a switch on the controller spins up the flywheels, and another flick controls a servo that allows the balls to enter the firing assembly and get launched. The ammo capacity on the jet is low at only twelve shots per load, and it fires all twelve in roughly half a second. Since the balls are fired at the ground in a known area, they’re easy to retrieve.

Continue reading “Modified R/C Jet Cannon Spews Nerf, Slays Cardboard Tanks”

35 MPH NERF Darts!

Did you know the muzzle velocity of a NERF dart out of a toy gun? Neither did [MJHanagan] until he did all sorts of measurement. And now we all know: between 35 and 40 miles per hour (around 60 km/h).

foo_thumbnailFirst, he prototyped a single beam-break detector (shown above) and then expanded his build to two in order to get velocity info. A Propeller microcontroller took care of measuring the timing. Then came the gratuitous statistics. He took six different darts and shot them each 21 times, recording the timings. Dart #3 was the winner, but they all had similar average speeds. You’re not going to win the office NERF war by cherry-picking darts.

Anyway, [MJ] and his son had a good time testing them out, and he thinks this might make a good kids’ intro to science and statistics. We think that’s a great idea. You won’t be surprised that we’ve covered NERF chronographs before, but this implementation is definitely the scienciest!

Thanks [drudrudru] for the tip!

Shoot Darts at the Shins of Total Strangers

[Michael Brumlow] found us and sent us a link. Within a few seconds, we were driving a webcam-enabled Nerf dart tank through his office and trying not to hit walls or get stepped on by his co-workers. Unfortunately, it was out of darts at the time, but you can find them all over the floor if you scout around.

screenshot_remote_botAll of the code details, including the link where you can test drive it yourself, are up on [Michael]’s GitHub. The brains are an Intel Edison board, and the brawns are supplied by an Arduino motor controller shield and (for the latest version) a chassis bought from China.

It runs fairly smoothly, considering the long round trip from [Michael]’s office in Texas, through wherever Amazon keeps their Web Services, over to us in Germany and back. Once we got used to the slight lag, and started using the keyboard’s arrow keys for control, we were driving around like a pro.

It’s got a few glitches still, like the camera periodically overheating and running out of WiFi distance. [Michael] said he’d try to keep it charged up and running while you give it a shot. The controls are multiplexed in the cloud, so your chance of steering it is as good as anyone else’s. It’ll be interesting to see what happens when thousands of Hackaday readers try to control it at once!

It takes a certain kind of bravery to put your telepresence robot up on the open Internets. So kudos to you, [Michael], and we hope that you manage to get some work done this week, even though you will have all of Hackaday driving into your cubicle walls.