More than one hundred years ago, Henri Becquerel discovered that uranium emitted penetrating rays similar to those used by Wilhelm Röntgen to take the first X-ray image (of his wife’s hand), starting a new era of far-reaching applications. There are of course many dangers that come with the use of radioactivity, but there are also many beneficial uses for our society.
radiation71 Articles
Heat Shrink Tubing And The Chemistry Behind Its Magic
There’s a lot to be said in favor of getting kids involved in hacking as young as possible, but there is one thing about working in electronics that I believe is best left as a mystery until at least the teenage years — hide the shrink tube. Teach them to breadboard, have them learn resistor color codes and Ohm’s Law, and even teach them to solder. But don’t you dare let them near the heat shrink tubing. Foolishly reveal that magical stuff to kids, and if there’s a heat source anywhere nearby I guarantee they’ll blow through your entire stock of the expensive stuff the minute you turn your back. Ask me how I know.
I jest, but only partly. There really is something fun about applying heat shrink tubing, and there’s no denying how satisfying a termination can be when it’s hermetically sealed inside that little piece of inexplicably expensive tubing. But how does the stuff even work in the first place?
Continue reading “Heat Shrink Tubing And The Chemistry Behind Its Magic”
Mood Lamp Also Warns Of Nuclear Catastrophe
[Michal Zalewski] has radiation on the brain. Why else would he gut a perfectly-horrible floor lamp, rebuild the entire thing with high-power RGB LEDs, and then drive it with a microcontroller that is connected up to a Geiger-Müller tube? Oh right, because it also looks very cool, and Geiger tubes are awesome.
If you’ve been putting off your own Geiger tube project, and we know you have, [Michal]’s detailed explanation of the driver circuit and building one from scratch should help get you off the couch. Since a Geiger tube needs 400 volts DC, some precautions are necessary here, and [Michal] builds a relatively safe inverter and also details a relatively safe way to test it.
The result is a nice piece of decor that simultaneously warns you of a nuclear disaster by flashing lights like crazy, or (hopefully) just makes a nice conversation piece. This is one of the cooler Geiger tube hacks we’ve seen since [Robert Hart] connected up eighteen Geiger tubes, and used them to detect the direction of incoming cosmic rays and use that to compose random music (YouTube, embedded below).
[Michal] is also author of the most excellent Guerrilla Guide to CNC Machining and keeps good tabs on his background radiation.
Continue reading “Mood Lamp Also Warns Of Nuclear Catastrophe”
Roam The Wastelands With This Fallout-Themed Mini Geiger Counter
For anyone who has worked with radioactive materials, there’s something that’s oddly comforting about the random clicks of a Geiger counter. And those comforting clicks are exactly why we like this simple pocket Geiger counter.
Another good reason to like [Tim]’s build is the Fallout theme of the case. While not an item from the game, the aesthetic he went for with the 3D-printed case certainly matches the Fallout universe. The counter itself is based on the popular Russian SBT-11A G-M tubes that are floating around eBay these days. You might recall them from coverage of this minimalist Geiger counter, and if you were inspired to buy a few of the tubes, here’s your chance for a more polished build. The case is stuffed with a LiPo pack, HV supply, and a small audio amp to drive the speaker. The video below shows it clicking merrily from a calibration source.
We can see how this project could be easily expanded — a small display that can show the counts per minute would be a great addition. But there’s something about how pocketable this is, and just the clicking alone is enough for us.
Continue reading “Roam The Wastelands With This Fallout-Themed Mini Geiger Counter”
Soviet Era Smoke Detector Torn Down, Revealing Plutonium
It’s widely known that a smoke detector is a good ionizing radiation source, as they contain a small amount of americium-241, a side product of nuclear reactors. But what about other sources? [Carl Willis] got hold of an old Soviet era smoke detector and decided to tear it down and see what was inside. This, as he found out, isn’t something you should do lightly, as the one he used ended up containing an interesting mix of radioactive materials, including small amounts of plutonium-239, uranium-237, neptunium-237 and a selection of others. In true hacker fashion, he detected these with a gamma ray spectroscope he has in his spare bedroom, shielded from other sources with lead bricks and copper and tin sheets. Continue reading “Soviet Era Smoke Detector Torn Down, Revealing Plutonium”
A Cheap, 555-Based Geiger Counter
Every mad scientist’s lair needs a Geiger counter. After all, if that UFO crashes on the back patio, you might need to know if it is hot. [Tanner_Tech] shows you how to build a cheap one that will get the job done.
You do need a Geiger tube, but a quick search of a popular auction site shows plenty of Russian surplus for a few bucks. The other thing you need is a source of high voltage (about 400V), which is the heart of the circuit using a 555-based DC to DC converter. You can see a video of the device working, below.
The DC to DC converter needs a transformer that [Tanner] swiped out of an alarm clock. A piezo transducer (stolen from a junk microwave) gives you the characteristic click. If you prefer solid state over hollow state, there’s an open source project that uses a PIN diode as a sensor. Or you could add an Arduino and some LEDs.
Air Quality Surveillance For Whole Cities
Air quality is becoming a major issue these days, and not just for cities like Beijing and Los Angeles. It’s important for health, our environment, and our economy no matter where we live. To that end, [Radu] has been working on air quality monitors that will be widely deployed in order to give a high-resolution air quality picture, and he’s starting in his home city of Timisoara, Romania.
[Radu] built a similar device to measure background radiation (a 2014 Hackaday Prize Semifinalist), and another to measure air quality in several ways (a 2015 Hackaday Prize Finalist and a Best Product Finalist; winners will be announced next weekend). He is using the platforms as models for his new meter. The device will use a VOC air sensor and an optical dust sensor in a mobile unit connected to a car to gather data, and from that a heat map of air quality will be generated. There are also sensors for temperature, pressure, humidity, and background radiation. The backbone of the project is a smart phone which will upload the data to a server.
We’ve seen other air quality meters before as well, and even ones based around the Raspberry Pi, but this one has a much broader range of data that it is acquiring. Its ability to be implemented as an array of sensors to gather data for an entire city is impressive as well. We can envision sensor networks installed on public transportation but to get to all parts of every neighborhood it would be interesting to team up with the Google Streetview Cars, Uber, or UPS.