The Surface Area to Volume Ratio or Why Elephants Have Big Ears

There are very few things that are so far reaching across many different disciplines, ranging from biology to engineering, as is the relation of the surface area to the volume of a body. This is not a law, as Newton’s second one, or a theory as Darwin’s evolution theory. But it has consequences in a diverse set of situations. It explains why cells are the size they are, why some animals have a strange morphology, why flour explodes while wheat grains don’t and many other phenomena that we will explore in this article.

Continue reading “The Surface Area to Volume Ratio or Why Elephants Have Big Ears”

Easy Free Piston Stirling Engine

Stirling engines are really cool machines, invented by Reverend Dr. Robert Stirling in 1816 to rival the steam engine, they are one of the most efficient engines ever conceived.  Building one is a very rewarding experience, but it has a certain level of difficulty. However, [Attila Blade]’s version of a free-piston type Stirling engine is simple enough to be built in a matter of minutes.

To build the engine you only need a test tube, steel wool, a latex glove, an O ring and some wire. The construction is straightforward as you can see in the video. The whole engine rocks on the wire frame which also makes it different to most other Stirling engines that you can watch on the net. The free piston is just one type of several possible configurations for a Stirling. The most common one, is the beta type, usually made with soda cans, but it is much more difficult to build than [Attila Blade]’s engine.

This is definitely a fun project that you may want to try, and is also a great way to learn  thermodynamics concepts. Even if you don’t build this particular version, there are many other possibilities using mainly household items, or you can also check the very interesting history behind the Stirling engine.

 

Hacking a Vintage TV into an Oscilloscope

Do you still have an old analog CRT  television lying around? With the advent of digital signals, analog TV´s are going to the dumpster or the recycling center. But you can still put them to good use, just as [GreatScott!] did, by converting the TV into a crude oscilloscope.

The trick is to take control of the two deflection coils that move the electron beam inside the CRT in the horizontal and vertical directions. The video describes in detail the process of identifying the coils and using an Arduino nano in combination with a DAC to amplify the input signal in order to get the waveform in the TV screen. Step by step explanations and great editing make this project delightful to watch.

Even if you do not follow [GreatScott!]´s steps to build a simple oscilloscope, don´t throw away that vintage TV!, it is a great source of analog parts. The flyback transformer can be used to make a high voltage power supply, and you also get some nice high voltage capacitors (both electrolytic and mylar ones), the horizontal output transistor which is a high voltage one, ferrite transformers, magnet wire, plus a lot of other small parts. Other uses for old TV sets that you may want to try is to convert your TV into a gaming console, or  an audio synthesizer controlled by drawing with a light-sensitive pen on a CRT television.

Continue reading “Hacking a Vintage TV into an Oscilloscope”

Marvelous Mechanisms: The Ubiquitous Four Bar Linkage

The four bar linkage is a type of mechanical linkage that is used in many different devices. A few examples are: locking pliers, bicycles, oil well pumps, loaders, internal combustion engines, compressors, and pantographs. In biology we can also find examples of this linkage, as in the human knee joint, where the mechanism allows rotation and keeps the two legs bones attached to each other. It is also present in some fish jaws that evolved to take advantage of the force multiplication that the four bar mechanism can provide.

How It Works

Deployable mirror with scissor linkages. By [Catsquisher] via Wikimedia Commons
The study of linkages started with Archimedes who applied geometry to the study of the lever, but a full mathematical description had to wait until the late 1800’s, however, due to the complexity of the resulting equations, the study and design of complex linkages was greatly simplified with the advent of the digital computer.

Mechanical linkages in general are a group of bodies connected to each other to manage forces and movement. The bodies, or links, that form the linkage, are connected to each other at points called joints. Perhaps the simplest example is the lever, that consists of a rigid bar that is allowed to pivot about a fulcrum, used to obtain a mechanical advantage: you can raise an object using less force than the weight of the object.

Two levers can be connected to each other to form the four bar linkage. In the figure, the levers are represented by the links a (A-D) and b (B-C).  The points A and B are the fulcrum points.  A third link f (C-D) connects the levers, and the fourth link is the ground or frame g (A-B) where the mechanism is mounted. In the animation below, the input link a (the crank) performs a rotational motion driving the rocker rod b and resulting in a reciprocating motion of the link b (the rocker).

This slider-crank arrangement is the heart of the internal combustion engine, where the expansion of gases against a sliding piston in the cylinder drives the rotation of the crank. In a compressor the opposite happens, the rotation of the crank pushes the piston to compress the gas in the cylinder. Depending on how the mechanism is arranged, it can perform the following tasks:

  • convert rotational motion to reciprocating motion, as we just discussed above.
  • convert reciprocating motion to rotational motion, as in the bicycle.
  • constrain motion, e.g. knee joint and car suspension.
  • magnify force, as in the parrotfish jaw.
Locking pliers mechanism. Image from [Engineering made easy]

Some Applications

One interesting application of the four bar linkage is found in locking pliers. The B-C and C-D links are set at an angle close to 180 degrees. When force is applied to the handle, the angle between the links is less than 180 (measured from inside the linkage), and the resulting force in the jaws tries to keep the handle open. When the pliers snap into the locked position that angle becomes less than 180, and the force in the jaws keeps the handle in the locked position.

In a bicycle, the reciprocating motion of the rider´s legs is converted to rotational motion via a four bar mechanism that is formed by the two leg segments, the bicycle frame, and the crank.

An example from nature, the Moray eel. Image from [Matthew West]
As with many other inventions of humankind, we often find that nature has already come up with the same idea via evolution. The parrotfish lives on coral reefs, from which it feeds, and has to grind the coral to get to the polyps inside. For that job, they need a very powerful bite. The parrotfish obtains a mechanical advantage to the muscle force by using a four bar linkage in their jaws! Other species also use the same mechanism, one is the Moray eel, shown in the image, which has the very particular ability to launch its jaws up in the mouth to capture its prey, much like the alien from the film series.

The joints connecting the links in the linkage can be of two types. A hinged joint is called a revolute, and a sliding joint is called a prismatic. Depending on the number of revolute and prismatic joints, the four bar linkage can be of three types:

  • Planar quadrilateral linkage formed by four links and four revolute points. This is shown in the animation above.
  • Slider-crank linkage, formed by three revolute joints and a prismatic joint.
  • Double slider formed by two revolute joints and two prismatic joints. The Scotch yoke and the trammel of Archimedes are examples.

There are a great number of variations for the four bar linkage, and as you can guess, the design process to obtain the forces and movements that we need is not an easy task. An excellent resource for the interested reader is KMODDL (Kinematic Models for Design Digital Library) from Cornell University. Other interesting sites are the 507 mechanical movements, where you can find nice animations, and [thang010146]’s YouTube channel.

We hope to have piqued your curiosity in mechanical things. In these times of ultra fast developments in electronics, looking at the working of mechanisms that were developed centuries ago, but are still present and needed in our everyday lives can be a rewarding experience. We plan to work on more articles featuring interesting mechanisms so please let us know your favorites in the comments below.

How Does a Voltage Multiplier Work?

If you need a high voltage, a voltage multiplier is one of the easiest ways to obtain it. A voltage multiplier is a specialized type of rectifier circuit that converts an AC voltage to a higher DC voltage. Invented by Heinrich Greinacher in 1919, they were used in the design of a particle accelerator that performed the first artificial nuclear disintegration, so you know they mean business.

Theoretically the output of the multiplier is an integer times the AC peak input voltage, and while they can work with any input voltage, the principal use for voltage multipliers is when very high voltages, in the order of tens of thousands or even millions of volts, are needed. They have the advantage of being relatively easy to build, and are cheaper than an equivalent high voltage transformer of the same output rating. If you need sparks for your mad science, perhaps a voltage multiplier can provide them for you.

Continue reading “How Does a Voltage Multiplier Work?”

Tiny Electric Motor Runs on Power from an LED

If you were not aware, LEDs can also work in reverse: they deliver tiny amounts of current, in the microamp range, when illuminated. If you look on YouTube you can find several videos of solar panels built with arrays of LEDs, but powering an electric motor with a single 3 mm LED is something that we’ve never seen before. [Slider2732] built a small electric motor that happily runs from a green LED in sunlight.

The motor uses four coils of 1,000 ohms each. Using coils with many turns of very fine wire helps to draw less current while keeping an appropriate magnetic field for the motor to run. To keep friction at a minimum, the rotor uses a needle that hangs from a magnet. Four neodymium magnets around the rotor are periodically pushed by the coils, generating rotation. A simple two-transistor circuit takes care of the synchronization and yes, the motor does run on the four microamps provided by the LED, and runs pretty well.

Building motors is definitely an enjoyable activity, these small pulse motors can be built in just a couple of hours. You can use coils with just a few tens of turns which are much more easy to make but of course you will need something more than four microamps! The nice part of making an ultralow current motor like this is that it can run for a very long time on a tiny battery or even a capacitor, we invite you to try building one.

Continue reading “Tiny Electric Motor Runs on Power from an LED”

Simple Marble Machine Captivates the Eyes

Marble machines are the kind of useless mechanisms that everybody loves. Their sole purpose is to route marbles through different paths for your viewing pleasure. They can be extremely complicated contraptions, and sometimes that is the precisely the point. However, even a simple mechanism can be delightful to watch. [Denha] just uploaded his latest creation, using a spring as elevator and a simple zig-zag path.

The construction is relatively simple, a spring with the appropriate pitch for the steel balls size is used as an elevator. The spring is driven by a small electric motor via a couple of gears, and a wooden zig-zag path for the marbles lies next to the spring. The marbles go up with the spring and return in the wooden path in an endless journey.

We believe that a serious hacker should build a marble machine at least once in their life. We have posted several of them, from simple ones to other more complicated designs that require careful craftsmanship. [Denha]’s Youtube channel is full of good ideas to inspire your first project. In any case, watching a marble machine at work is quite a nice, relaxing experience.

Continue reading “Simple Marble Machine Captivates the Eyes”