An Attempt To Replace Multiple RFID Cards With A Single Hacked-together Tag

It’s kind of a convoluted title, but [Hudson’s] attempt to replace multiple HID Prox cards with one AVR chip didn’t fully pan out. The project started when he wanted to reduce the number of RFID access cards he carries for work down to just one. The cards use the HID Proximity protocol which is just a bit different from the protocols used in most of the hobby RFID projects we see. He ended up taking an AVR assembly file that worked with a different protocol and edited it for his needs.

The device above is the complete replacement tag [Hudson] used. It’s just an AVR ATtiny85 and a coil made of enameled wire. The coil pics up current from the card reader’s magnetic field, and powers the chip through the leakage on the input pins (we’ve seen this trick a few times before). The idea he had was to store multiple codes on the device and send them all in a row. He was able to get the tag to work for just one code, but the particulars of the HID Prox reader make it difficult if not impossible to send multiple codes. The card must send the same code twice in a row, then be removed from the magnetic field before the reader will poll for another combination.

RFID Emulator Card Includes A Learning Mode

rfid-emulator

This RFID card has a lot of nice features. But the one that stands out the most is the ability to learn the code from anther RFID tag or card.

You can see that the board includes an etched coil to interact with an RFID reader. This is the sole source of power for the device, letting it pick up enough induced current from the reader to power the PIC 12F683 seen on the upper left of the board. The underside of the PCB hosts just three components: an LED and two switches. One of the switches puts the device in learning mode. Just hold down that button as you move the board into the magnetic field of the reader. While in learning mode a second RFID tag is held up to the reader. It will identify itself and the emulator will capture the code sent during that interaction. This is all shown of in the video after the break. We wonder how hard it would be to make a version that can store several different codes selected by holding down a different button as the emulator is held up to the reader?

If you want to build your own card reader too here’s a project that does it from scratch.

Continue reading “RFID Emulator Card Includes A Learning Mode”

Real Life Mario Karts React To Launchable Items

real-life-mario-kart

The team over at Waterloo Labs reasserts their reputation for creativity with this real life Mario Kart project. One of the team members must work at Austin’s Park because they seem to have had free rein when it comes to modifying the go-karts and filming the delightful video presentation found after the break.

It’s one thing to put on some costumes and head off to the go-kart track. It’s another to modify the vehicles to react to items launched by another rider. You can see the painted PVC launcher hardware to the right of each driver. By stuffing a plush item (banana, star, mushroom, etc.) in the barrel the driver can use compressed air to launch it quite a distance. Inside of each item is an RFID tag. When the RFID reader on a kart detects the tag it can take control of the steering, brake pedal, or speed limiter to inflict the appropriate actions.

If you don’t have this kind of insider access to your local go-kart track don’t fret. You just need to build your own set of karts.

Continue reading “Real Life Mario Karts React To Launchable Items”

Color Changing Bag Matches Clothing Color, Tells You What’s Inside

color-changing-shoulder-bag

Adding some lights to your everyday items will certainly give you a style leaning toward the world of Blade Runner. But if you can add functionality to control the blinky components you’ve actually got something. A great example of this is [Kathryn McElroy’s] Chameleon Bag. It’s a shoulder bag with a light-up flap. It can color match your clothing, but she also built some features that will let you know what is inside of the bag.

The project started by using a cardboard template in the size and shape of the bag’s flap. After adding an Arduino to control the LEDs and an RFID reader for an interactive element she sewed a replacement flap that also acts as a diffuser. In the video after the break she demonstrates matching the color of her scarf by reading a tag sewn in the end of it. She then starts loading up all the stuff needed for a day away from home. As the keys, phone, and computer are placed in the bag their tags are read, resulting in different combinations of color. Once everything she needs is inside, the flap turns green and she heads out the door.

This will go great with your illuminated umbrella.

Continue reading “Color Changing Bag Matches Clothing Color, Tells You What’s Inside”

Science Fair Project Sorts Recyclables

This crew of high schoolers built a sorting robot for the Smart Young Mindz challenge. We got pretty excited when hearing that it sorts plastic by its recycling code, but unfortunately this isn’t quite what it’s made out to be. The device uses an RFID code on each product to figure out where it goes. Their thinking is that at some point every product sold will have an embedded tag in it. For now this will not revolutionize the recycling industry, but the build is still impressive. We’re sure they learned a ton from all of the mechanical engineering that went into the project.

You can see the three laundry baskets that serve as the sorting bins. The white box above the bin on the right is the hopper in which a plastic container is placed. The box can then revolve around a central axis to position itself over the correct basket. The floor of the box is then retracted, dropping the refuse in the bin. Check out the video after the break for the satisfying cry of the servo motors at work.

We like seeing recycling robots, but so far most of what we’ve seen are aluminum can crushers.

Continue reading “Science Fair Project Sorts Recyclables”

Electronically Augmented Foosball Brings Competition To The Office

This office has a Foosball league that automatically tallies and posts the standings for each employee. This is thanks to all of the extra electronics that were added to the Foosball table in the break room.

The system is connected to the internet via WiFi. This allows it to store the final results of each game for use on the leader board. Player first identify themselves to the system using the RFID tag embedded in their employee badge (normally used to open doors in the building). From there the game play proceeds much like you’d expect, but the scoring is handled automatically. Each goal has a laser pointed across it which is broken when the ball passes through. But there are a pair of arcade buttons in case of a scoring error.

Standings are listed at the webpage linked above. There’s even functionality for new employees to registers through this page. Don’t miss a glimpse of the build in the clip after the break.

Continue reading “Electronically Augmented Foosball Brings Competition To The Office”

A Better Way To Hack IClass RFID Readers

iClass is an RFID standard that is aimed at better security through encryption and authentication. While it is more secure than some other RFID implementations, it is still possible to hack the system. But initial iClass exploits were quite invasive. [Brad Antoniewicz] published a post which talks about early attacks on the system, and then demonstrates a better way to exploit iClass readers.

We remember seeing the talk on iClass from 27C3 about a year and a half ago. While the technique was interesting, it was incredibly invasive. An attacker needed multiple iClass readers at his disposal as the method involved overwriting part of the firmware in order to get a partial dump, then patching those image pieces back together. [Brad] makes the point that this is fine with an off-the-shelf system, but high-security installations will be using custom images. This means you would need to get multiple readers off the wall of the building you’re trying to sneak into.

But his method is different. He managed to get a dump of the EEPROM from a reader using an FTDI cable and external power source. If you wan to see how he’s circumventing the PIC read protection you’ll have to dig into the source code linked in his article.