Sound Reactive Christmas Tree Makes Folks Happy

This non-traditional Christmas tree in Victoria, British Columbia is bringing people together this holiday season. It boasts over 800 lights that react to sound. You can see the pulsing and color changing that go along with some Tuba carols in the clip after the break.

The art installation was commissioned by the Downtown Victoria Business Association. A great big cherry tree was adorned with strings of individually addressable RGB LED Christmas lights. They are controlled by a system which calculates changes based on onset, energy and frequency analysis of sound picked up by multiple microphones. The effect is delightful and it’s not just musicians getting in on the fun. Passersby can’t seem to help themselves from yelling, clapping, and singing to make the tree sparkle.

Also included in the project is an interactive stop-motion animation film. It’s projected on the side of a building and invites viewers to send a text message to interact with it. A video of this is also found after the jump.

Continue reading “Sound Reactive Christmas Tree Makes Folks Happy”

Driving A WS2811 RGB LED Pixel

[Alan] has been working on driving this WS2811 LED module with an AVR microcontroller. It may look like a standard six-pin RGB LED but it actually contains both an LED module and a microcontroller to drive it. This makes it a very intriguing part. It’s not entirely simple to send commands to the module as the timing must be very precise. But once the communication has happened, the LED will remain the same color and intensity until you tell it otherwise. You can buy them attached to flexible strips, which can be cut down to as few as one module per segment. The one thing we haven’t figure out from our short look at the hardware is how each pixel is addressed. We think the color value cascades down the data line as new values are introduced, but we could be wrong. Feel free to discuss that in the comments.

The project focuses on whether or not it’s even possible to drive one of these pixels with a 16MHz AVR chip. They use single-wire communications at 800 kHz and this really puts a lot of demand on the microcontroller. He does manage to pull it off, but it requires careful crafting in assembly to achieve his timing constraints. You can see a quick clip of the LEDs fading between colors after the break.

Continue reading “Driving A WS2811 RGB LED Pixel”

Adding A SCART Input To A Console VGA Converter

If you’re working with a CGA, EGA, or RGB gaming system this inexpensive board does a great job of converting the signal to VGA so that you can play using a modern display. But what if you have a SCART connector as an output? That’s the situation in which [EverestX] found himself so he hacked in SCART support.

The first step is to source a female SCART connector. He grabbed a coupler off of eBay and cracked it open, yielding two connectors. Now comes the wiring and you may have already noticed that there’s a lot more going on here than the color channels, sync signal, and ground. Technically that’s all you really need to make this happen, but the results will not be good. First off, the sync signal for SCART tends to be rather awful. That’s where the blue breakout board comes into play. [EverestX] used an LM1881 to grab the composite sync (yes, composite sync, not component sync) signal as a feed for the VGA converter. He also added in an audio jack for the sound that is coming through the connector.

Beginner Project: Color Sensing With RGB LEDs And A Photocell

I’ve seen the concept art for “real world eyedroppers” several times. I haven’t noticed any of the products come to market though. It isn’t the technology stoping them, color sampling can be done a million ways. I picked one of the easiest ways and tossed something together pretty quickly.

Continue reading “Beginner Project: Color Sensing With RGB LEDs And A Photocell”

Halloween Props: A Spooky Mirror

This mirror will spook your guests with a variety of static and animated images. It includes a proximity sensor so the images will not appear until someone comes close enough to see themselves in the looking glass.

The electronic parts are quite easy to put together. There is a 32×32 RGB LED matrix mounted on the back of the mirror. It is driven by an IOIO board with some custom firmware written by [Ytai], the creator of that board who happens to live next door to [Alinke]. Where this starts to get interesting is when [Alinke] was working on the mirror to make the LEDs visible from the front. He used a razor knife to put hundreds of scratches in the varnish on the back. This lets just enough light through to see the LEDs, but keeps the mirrored surface reflective. See for yourself in the clip after the break.

The images are fed to the IOIO board by an Android device. We think this could have a lot of use after Halloween as a weather display or news ticker. Perhaps you could even feed it from your diy Android thermostat.

Continue reading “Halloween Props: A Spooky Mirror”

LED Wand Brings Ergonomics To Light Painting

Quit struggling with hastily patched together electronics for your light painting images. Follow [Madox’s] example and build a light painting wand designed with your hand in mind.

You wield it much like a sword, but the only damage it does is to the long-exposure camera pointed its way. The RGB LED strip is controlled by the guts of a tiny little wireless router, a TP-Link TL-WR703N. This lets [Madox] connect using an Android device to upload different images. It also lets you tweak the settings like adjusting the timing between columns to match your exposure settings. The custom handle design provides a home and mounting plan for everything involved. It was 3D printed at the Sydney Hackerspace.

This isn’t the first light painting device running Linux. We’ve actually seen the Raspberry Pi used in much the same way but that final project involved using an entire recumbent tricycle to move the colored lights.

Dinosaur Hoodie To Remind You Halloween Approaches!!

[Tom’s] dinosaur hoodie would make a bang up Halloween costume. It’s a glowing version of the bony plates you’d find on a Stegosaurus. Not only does it look great at night, you should be able to put one together or yourself in an afternoon.

He used a laser cutter to make the translucent fins, but it would not be hard to cut them all out by hand. Each piece is two sides of the plate connected by a narrow rectangle which leaves room inside for an RGB module. These are chained together and controlled by an Arduino (most likely using SPI or I2C, we’re not sure which), then sewn on the back of a hoodie.

Update: [Matt] made a derivative of this design. The plates are pointy like a stegosaurus.

Send in those Halloween projects

Which reminds us… Halloween quickly approaches and we haven’t seen the usual onslaught of awesome. We love this time of year because of the ingenuity that comes out to play in the costumes, yard decor, and scare tactics being prepared for the big night. Please send a link to your project and we’ll start pumping out the holiday features.

To get you thinking, here’s a set of folding wings used in a costume, and a possessed powerwheels to chase down the little ones. Don’t sit on your hands, we want to hear about every project!