Resulting tweezer assembly, with a 3D printed replacement case for both of the probes

Hackaday Prize 2022: Glue-Hindered Smart Tweezer Repair Involves A Rebuild

[Dan Julio] owns a pair of Miniware multimeter tweezers, a nifty helper tool for all things SMD exploration. One day, he found them broken – unable to recognize any component between the two probes. He thought it could be a broken connection problem, and decided to take them apart. Presence of some screws on their case fooled him – in the end, it turned out that the case was glued together, and could only be opened destructively. For an entry in the “Reuse, Recycle, Revamp” round of 2022 Hackaday Prize, he tells us how he brought these tweezers back from the dead.

During the disassembly, he broke a custom flexible PCB, which wasn’t reassuring either. However, that was no reason to give up – he reverse-engineered the connections and the charging circuitry, then assembled parts of the broken tweezers together using a small generic protoboard as a base. Indeed, it was likely a broken connection between probes, because the reassembled tweezers worked!

Of course, having exposed PCBs wouldn’t do, and from the very start, assembling these tweezers back together was not an option. Instead, he developed a replacement case in OpenSCAD, bringing the tweezers back to life as his trusty tool – and still leaving repairability on the table. If you’re interested in the details, he goes more into how these tweezers are designed when it comes to charging and connectivity, and we recommend that you give his write-up a read!

We’ve been seeing smart tweezers around for over a decade now, from reviews and hacks of commercially made ones, to DIY chopstick-based and PCB-based ones. If you already own a pair of tweezers you’ve grown attached to, you can neatly retrofit them with a capacitance sensing function!

Hackaday Links: December 22, 2013

hackaday-links-chain

[Korben] is using a picture frame as a Bluetooth speaker (translated). He hacked a Rock’R² for this project. It’s a device that has a vibrating element which can be used to make any hollow item into a speaker.

Entertain yourself over the holidays by mastering the Apollo Guidance Computer simulator. It’s a JavaScript version of the computer used in the modules of the Apollo moon missions.  [Thanks Gregory and Paul]

Here’s a little mirror attachment that lets you use your laptop as an overhead projector. [Ian] calls it the ClipDraw. Affix it to the webcam and use the keyboard as the drawing surface. Since it’s simply using the camera this works for both live presentations and video conferencing. What we can’t figure out is why the image doesn’t end up backward?

This guide will let you turn a Carambola board into an AirPlay speaker.

Those who suck at remembering the rules for a game of pool will enjoy this offering. It’s some add-on hardware that uses a color sensor to detect when a ball is pocketed. The Raspberry Pi based system automatically scores each game.

We spend waaaay too much time sitting at the computer. If we had a treadmill perhaps we’d try building [Kirk’s] treadmill desk attachment. It’s made out of PVC and uses some altered reduction fittings to make the height adjustable. It looks like you lose a little bit of space at the front of the belt, but if you’re just using it at a walking pace that shouldn’t matter too much.

You can have your own pair of smart tweezers for just a few clams. [Tyler] added copper tape to some anti-static tweezers. The copper pads have wires soldered to them which terminate on the other end with some alligator clips. Clip them to your multimeter and you’ve got your own e-tweezers.

Measuring SMD Parts With A Home Brew Version Of Smart Tweezers

SMD parts are great; they allow you to pack more parts on a board, do away with drilling dozens of PCBs, and when done correctly can produce a factory-quality board made in a home lab. There’s one problem with SMD parts; troubleshooting and measuring them. The ideal solution would be something akin to the Smart Tweezers we’ve seen before, but this fabulous tool costs three hundred bones. [Kai] came up with a much cheaper solution: home brew smart tweezers that can be built for a tenth of the cost as the professional model.

What [Kai] built is an LCR meter, basically a tool that measures inductance, capacitance, and resistance in a very, very small form factor. The technique of measuring a part’s properties involves feeding a set frequency into the device and measuring the phase, voltage and current coming out. It’s all wonderfully explained by [Dave] over at EEVblog in one of his earlier videos.

The hardware [Kai] is using includes an LCD display from a Nokia phone, an MSP430-based microcontroller, a very tiny opamp near the tip of one of the points of the tweezer, and a programmable gain amplifier used to measure the components. In testing, [Kai] can measure very low-value components with a +/- 2% accuracy, and larger, more realistic components with +/- 0.25% accuracy. An awesome accomplishment, and much better than the common Chinese meters that can’t measure in the nH/pF/mΩ range.

[Kai] hasn’t gotten his pair of smart tweezers working yet – he still needs to get the circuit up and running and write some software. We’ll keep our readers apprised of [Kai]’s progress, though, and gently convince him to work with Seeed Studio or someone similar to get his version of Smart Tweezers onto maker’s workbenches the world over.

Tools: Smart Tweezers

We’re big fans of surface mount parts. SMD components are cheaper, take less board space, and don’t require drilling; all the coolest new parts are only available in SMD packages.

Smart Tweezers are an advanced multimeter tool specifically designed to test and troubleshoot SMD circuits. It automatically identifies resistors, capacitors, and inductors, and displays the relevant measurements. Advanced Devices sent us a pair of Smart Tweezers to review. We used them while building our last few SMD projects, read about our experience with this tool after the break.

Continue reading “Tools: Smart Tweezers”