Robotic Pool Cue Can Be Your Friend Or Your Foe

In his everlasting quest to replace physical skill with technology, [Shane] of [Stuff Made Here] has taken aim at the game of eight-ball pool. Using a combination of computer vision and mechatronics, he created a robotic pool system that can allow a physical game of pool over the internet, or just beat human players. See the video after the break.

Making a good pool shot requires three discrete steps. First, you need to identify the best shot, then figure out how exactly to strike the balls to achieve the desired results, and finally physically execute the shot accurately. [Shane’s] goal was to automate all these steps. For the physical part, he built a pool cue with a robotic tip which only requires the user to place in approximately the right position, while a pneumatic piston mounted on a Stewart platform does the rest. A Stewart platform is a triangular plate mounted with six reciprocating rods, which gives it the required freedom of motion. The rods’ bases are attached to a set of cranks actuated by tension cables pulled by servos mounted at the rear-end of the cue. An adjustable air system allows the power of the shot to be adjusted as required.

A camera mounted is mounted over the table and connected to computer vision software to gather the required position information. Fiducials on the corners of the table and the cue tip allow the position of the pockets, balls, and cue to be accurately determined, and theoretically should allow the robot to take the perfect shot. Getting this to work in reality quickly turned into a very frustrating experience. After many hours of debugging, [Shane] tracked the error to a tiny forgotten test function that was introducing 5-10 mm of position error, and 2 of the six servos in the cue not performing up to spec. To determine the vertical positioning of the cue, an IMU and fixed height foot were added. [Shane] also added an overhead projector to overlay all required information directly on the table. Continue reading “Robotic Pool Cue Can Be Your Friend Or Your Foe”

Making A “Unpickable” Lock

Every time manufacturers bring a new “unpickable” lock to market, amateur and professional locksmiths descend on the new product to prove them wrong. [Shane] from [Stuff Made Here] decided to try his hand at designing and building an unpickable lock, and found that particular rabbit hole to be a lot deeper than expected. (Video, embedded below.)

Most common pin tumbler locks can be picked thanks to slightly loose fits of the pins and tiny manufacturing defects. By lifting or bumping the pins while putting tension on the cylinder the pins can be made to bind one by one at the shear line. Once all the pins are bound in the correct position, it can be unlocked.

[Shane]’s design aimed to prevent the pins from being set in unlocked position one by one, by locking the all pins in whatever position they are set and preventing further manipulation when the cylinder is turned to test the combination. In theory this should prevent the person doing the picking from knowing if any of the pins were in the correct position, forcing them to take the difficult and time-consuming approach of simply trying different combinations.

[Shane] is no stranger to challenging projects, and this one was no different. Many of the parts had to be remade multiple times, even with his well-equipped home machine shop. The mechanism that holds the pins in the set position when the cylinder is rotated was especially difficult to get working reliably.  He explicitly states that this lock is purely an educational exercise, and not commercially viable due to its mechanical complexity and difficult machining.

A local locksmith was unsuccessful in picking the lock with the standard techniques, but the real test is still to come. The name [LockPickingLawyer] has probably already come to mind for many readers. [Shane] has been in contact with him and will send him a lock to test after a few more refinements, and we look forward to seeing the results! Continue reading “Making A “Unpickable” Lock”

Five-Axis Pumpkin Carving

The day of carved pumpkins is near, and instead of doing manually like a mere mortal, [Shane] of [Stuff Made Here] built a five-axis CNC machine to take over carving duties. (Video, embedded below.)

[Shane] initially intended to modify his barber robot, but ended up with a complete redesign, reusing only the electronics and the large ring bearing in the base. The swiveling spindle is a rotating gantry with two sets of aluminum extrusions for vertical and horizontal motion. The gantry isn’t very rigid, but it’s good enough for pumpkin carving. Software is the most challenging part of the endeavor due to the complexity of five-axis motion and mapping 2D images onto a roughly spherical surface. Cartographers have dealt with this for a long time, so [Shane] turned to Mercator projection to solve the problem. We’re also relieved to hear that we aren’t the only ones who sometimes struggle with equation-heavy Wikipedia pages.

Since there are no perfectly spherical pumpkins, [Shane] wrote a script to probe the surface of the pumpkin with a microswitch before cutting, appropriately named “TSA.exe”. The machine is capable of carving both profiles and variable depth lithophanes, mostly of [Shane]’s long-suffering wife. She seriously deserves an award for holding onto her sense of humor.

With projects like explosive baseball bats and CNC basketball hoop, the [Stuff Made Here] YouTube Channel is worth keeping an eye on.

Going For The Home Run Record With Explosive Help

The baseball home run distance challenge for crazy engineers is really heating up, with the two main (only?) competitors joining forces. [Shane] of [Stuff Made Here] and [Destin] of [Smarter Every Day] did a deep dive into [Shane]’s latest powder charged baseball bat, designed to hit a ball 600+ feet.

[Shane] built two new versions of his bat this time, using the lessons he learned from his previous V1 and V2 explosive bats. It still uses blank cartridges, but this time the max capacity was increased from three to four cartridges. For V3 a section of the bat was removed, and replaced with a four-bar linkage, which allowed the entire front of the bat to move. The linkage integrated a chamber for four blank cartridges that could be loaded almost like a double barrel shotgun and closed with a satisfying snap. Unfortunately the mass of the moving section was too much for the welds, and the entire front broke off on the first test, so the design was scrapped.

V4 returned to the piston concept of the initial version, except V4 contains two parallel pistons, in a metal bat, with a larger hitting surface. With two cartridges it worked well, but parts started breaking with three and four, and required multiple design updates to fix. [Destin] covered the physics of the project and took some really cool high speed video. He and [Jeremy Fielding] hold the current distance record of 617 ft with their crazy Mad Batter. Unfortunately on [Shane]’s final distance attempt the bat broke again, and the ball was lost in a field with tall grass beyond the 600-foot mark, so they could not confirm if the record was actually broken.

[Destin] and his team still remain the undisputed baseball velocity record holders, with their supersonic baseball canon. It sounds like there might be another collaboration between [Destin] and [Shane] in the future, and we’re definitely looking forward to the results of that crazy venture. Continue reading “Going For The Home Run Record With Explosive Help”

A Special Baseball Bat With Explosive Hitting Power

To make up for some lacking athletic ability, [Shane Wighton] of [Stuff Made Here] created a custom baseball bat with an explosive sweet spot, that almost guarantees a home run. Inside a custom machined bat, he added a piston mechanism, powered by blank cartridges intended for powder actuated nailers, that can hit a ball with impressive force.

Up to three rimfire blank cartridges are placed in the stationary side of the piston mechanism, and are fired by three firing pins on the back of the piston when a ball hits the front of the piston. The expanding gasses then drive the piston out at high velocity, hitting the ball, before it is stopped from flying out completely by a crossbar. The gasses are exhausted through the side of the sleeve, into a “muffler” machined into the front of the bat. The first time [Shane] fired the mechanism with two cartridges, it almost sheared off the stopping bar, and damaged all the other components and blew the bat apart. This led to a complete redesign, including a crossbar with urethane dampers and an aluminum muffler.

The results with the “upgrades” are pretty impressive, and a little scary. Batting distance was around 350 feet with two cartridges, hitting the ball off a tee to avoid putting a pitcher in the firing line. [Shane] did a lab test with three cartridges, which put a hole in the ball and looked like it would break the bat. He expects that three cartridges would allow him to break the home run record, but would require another redesign and will be left for a future video

We admit to being rather envious of [Shane]’s workshop, and the projects that come out of it. We’ve seen him create an all-in-one golf club, a robotic barber, and a robotic basketball hoop, to name a few.

A Robotic Golf Club To (Possibly) Boost Your Game

Golf can be incredibly frustrating even for the well practiced player, and probably one of the leading causes for swearing on Saturday mornings. In effort to solve this global problem [Shane Wighton], is creating the ultimate cheat device robotic golf club, that can eliminate all the clubs in one, and adjust for the desired distance mid-swing.

Different golf clubs are mostly defined by their loft angle, or the angle at which the club face is designed to strike the ball in relation to the ground, with the purpose of changing the takeoff angle and therefor the distance traveled. To eliminate the need for different clubs, [Shane] made a head for which the loft angle can be set using a rotary encoder and display on the shaft. However building a tilting a mechanism that can survive the ±4000 lbs of force generated during impact requires some clever engineering. The first iteration was a rather impressive hydraulic design, but it required a large hydraulic power source and the pressure waves generated in the system caused the pistons in the head to blow out every time. The second iteration uses a hobby servo with a combination of machined and SLA printed parts, but in such a way that no force is transmitted to the servo at impact, similar to how a lead screw works. [Shane] actually managed to play a full 18 holes with no problems.

The second feature on the club is to adjust the loft angle mid-swing for the speed of the club to hit the ball a specified distance. A high precision IMU is used to measure the speed and angle of the club. The servo can’t move instantaneously, so it has to predict the impact velocity based on past data. Unfortunately no two swings are ever exactly the same, which introduces some error into the system. Continue reading “A Robotic Golf Club To (Possibly) Boost Your Game”