AI Phone App Learns Baseball Signals

Watching a sport can be a bit odd if you aren’t familiar with it. Most Americans, for example, would think a cricket match looked funny because they don’t know the rules. If you were not familiar with baseball, you might wonder why one of the coaches was waving his hands around, touching his nose, his ears, and his hat seemingly at random. Those in the know however understand that this is a secret signal to the player. The coach might be telling the player to steal a base or bunt. The other team tries to decode the signals, but if you don’t know the code that is notoriously difficult. Unless you have the machine learning phone app you can see in the video below.

If you are not a baseball fan, it works like this. The coach will do a number of things. Perhaps touch his cap, then his nose, brush his left forearm, and touch his lips. However, the code is often as simple as knowing one attention signal and one action signal. For example, the coach might tell you that if they touch their nose and then their lips, you should steal. Touching their nose and then their ear is a bunt. Touching their nose and then the bill of their cap is something else. Anything they do that doesn’t start with touching their nose means nothing at all. If the signal is this easy, you really don’t even need machine learning to decode it. But if it were more complicated — say, the gesture that occurs third after they touch their nose unless they also kick dirt at which point it means nothing — it would be much harder for a human to figure out.

Continue reading “AI Phone App Learns Baseball Signals”

Farting Baseball; From The Makers Of Self-Solving Rubik’s Cube

Some hackers have a style all their own that is immediately recognizable from one project to the next. For instance, you can tell a [Takashi Kaburagi] by its insides. The behavior of his Farting Baseball project (machine translation) is amusing, but the joke is only skin deep. Look inside and you’ll gain a huge appreciation for what has been done here. It’s not as mind-boggling as his work on the self-solving Rubiks cube robot, but the creativity and design constraints are similarly impressive.

Clever detail is the square of soft material used to cushion impact

This whimsical project is a curve ball no matter who throws it. While in flight, a jet of compressed gas can alter the trajectory at the press of a button. Inside is a small pressure vessel that is filled with HFC134A refrigerant commonly used on gas blowback pistols. It’s a non-combustible that lies in wait until a solenoid is activated to release the pressure in a powerful jet. The ball carries a CR2032 to power the wireless link for activation, but that solenoid needs more juice so capacitors are charged for this purpose.

It’s worth digging through the details on this one, including the article on measuring discharge time (machine translation). There are numerous nice touches, like the yellow Whoopee Cushion neck that directs the jet, the capacitor discharge materials so there is not an accidental activation when not in use, and clever and clean construction that make everything fit.

Another hacker with an equally iconic style is [Mohit Bhoite]’s work; make his flywire sculptures your next stop.

Continue reading “Farting Baseball; From The Makers Of Self-Solving Rubik’s Cube”