Wood game piece being carved by a CNC mill with a hacked rotary axis

This $12 CNC Rotary Axis Will Make Your Head Spin

[legolor] brings us a great, cheap rotary axis to add to your small 3 axis CNC mills. How are you going to generate G-Code for this 4th axis? That’s the great part, and the hack, that [legolor] really just swapped the Y axis for the rotation. To finish the workflow and keep things cheap accessible to all there’s a great trick to “unwrap” your 3D model so your CAM software of choice thinks it’s still using a linear Y axis and keeps your existing workflow largely intact. While this requires an extra step in Blender to do the unwrapping, we love the way this hack changes as little of the rest of your process as possible. The Blender script might be useful for many other purposes too.

Wood game pieces carved from wood by a CNC mill with a hacked rotary axis

The results speak for themselves too! We thought the 3D printed parts were suspect in a CNC setup, but for the small scale of game pieces and milling wood, the setup is stable enough to produce a surprisingly accurate and detailed finish. If you want to try the same approach with something larger or a tougher material, [legolor] has a suggestion of a tailstock setup that’s still under $100 USD. Continue reading “This $12 CNC Rotary Axis Will Make Your Head Spin”

Pizza-Making CNC Machine Is The Only Tool We’ve Ever Dreamed Of

Making pizza is fun, but eating pizza is even better. Ideally, you’ll get to spend much more time doing the latter than the former. If you had a pizza-making CNC machine, that would help you achieve this goal, and thankfully, [Twarner] is working on that very technology.

The Pizza-Pizza CNC Machine is based on Marlin firmware running on a Mini RAMbo 3D printer motherboard, and is a 3-axis CNC machine. At a glance, you could be forgiven for thinking it’s some kind of fancy futuristic vinyl player, but it’s actually intended to cook a tasty delicious pie. It’s a gantry-based machine that uses two tool ends, one charged with distributing sauce, and the other cheese. It’s programmed with G-code to designate areas to coat with sauce and areas to cover with cheese. It can’t create dough from scratch sadly, but instead operates using pre-manufactured pizza bases.

The current level of sophistication is low, and there are issues with cheese clogs and the general messiness of the operation. However, this doesn’t mean there’s no value in automated pizza manufacture. If anything, we want to see the more open-sauce development in this area until we end up with a pizza factory on every kitchen bench worldwide. We’ve already seen that hackers have mastered how to build a good pizza oven, so now we just need to solve this part of the equation. Video after the break.

Continue reading “Pizza-Making CNC Machine Is The Only Tool We’ve Ever Dreamed Of”

Carving Terrain Maps Into Plywood With Software Help

CNC machines are incredibly versatile tools. At a machine shop, they can machine all kinds of metal and plastic parts. Beyond that, they can engrave various materials including glass, and even create PCBs. [Steve] has a CNC machine of his own creation in his shop, and while he might be employing it for those common uses, his artistic creations are on the showcase for today with these 3D topographic relief maps.

The key to creating a good topographic relief map is good material stock. [Steve] is working with plywood because the natural layering in the material mimics topographic lines very well, especially with the high-quality marine-grade birch plywood he is using. Making sure to select pieces without knots improves the final product substantially, as does taking the time to fill any voids. Selecting good stock is only part of the process though. [Steve] is using TouchTerrain, an open source project helmed by [Dr. Chris Harding] of Iowa State University, to create the model which gets fed to the CNC machine. Originally intended for 3D printing applications, the web-based tool lets you easily select an area on the globe and export its topographical data to a standard STL or OBJ file.

With good stock and the ability to easily create 3D topographic maps, anyone with a CNC machine like this could easily reproduce their terrain of choice. We imagine the process might be easily ported to other tools like 3D printers, provided the resolution is high enough. We have also seen similar builds using laser cutters, although the method used is a little different.

photo of the CNC controller, with the PLCC socket for the CPU, surrounded by driver ICs

Old CNC Brain Swapped With An Arduino

[Sebastian] and [Stefan Shütz] had a ISEL EP1090 CNC machine at home, sitting unused, and they decided to bring it to life. With pretty good mechanical specs, this CNC looked promising – alas, it was severely constrained by its controller. The built-in CPU’s software was severely outdated, had subpar algorithms for motor driving programmed in, and communication with the CNC was limited because the proprietary ISEL communications protocol that isn’t spoken by other devices.The two brothers removed the CPU from its PLCC socket, and went on to wiring a grbl-fueled Arduino into the controller box.

The interposer PCB, with an extra 74HC245 buffer on itThey reverse-engineered the motor driver connections – those go through a 74HC245 buffer between the original CPU and the drivers. Initially, they put an Arduino inside the control box of the CNC and it fit nicely, but it turned out the Arduino’s CPU would restart every time the spindle spun up – apparently, EMC would rear its head. So, they placed the Arduino out of the box, and used two CAT7 cables to wire up the motor and endstop signals to it.

For tapping into these signals, they took the 74HC245 out of its socket, and made an interposer from two small protoboards and some pin headers – letting them connect to the STEP and DIR lines without soldering wires into the original PCB. There’s extensive documentation, GRBL settings, and more pictures in their GitHub repo, too – in case you have a similar CNC and would like to learn about upgrading its controller board!

After this remake, the CNC starts up without hassles. Now, the brothers shall CNC on! Often, making an old CNC machine work is indeed that easy, and old controller retrofits have been a staple of ours. You can indeed use an Arduino, one of the various pre-made controller boards like Gerbil or TinyG, or even a Raspberry Pi – whatever helps you bridge the divide between you and a piece of desktop machinery you ought to start tinkering with.

Tiny Chain-Link Fence Made With Hand-Cranked Brilliance

Chain link fences are woven with a mechanism that is almost hypnotic to watch, so [Levsha] decided to build his own tiny hand-crank tabletop version to make tiny copper wire fences.

Chain link consist of a series of wires bent and woven in a zigzag pattern. The zigzag bends are made by winding the wire around a rotating flat plate inside a stationary tube with a spiral slot in the side to keep the spacing of the bends consistent. [Levsha]’s version is roughly 1/10 scale of the real thing, and only does the bending and winding parts. Linking the bent wire together is up to the operator. All the components were machined on a lathe and CNC router, and beautifully finished and assembled on a wood base. The hardest part was the tube with the spiral slot, which took a few attempts to get right. [Levsha] initially tried to use steel wire, but it was too stiff and caused the winding mechanism to lock up. 0.4 mm copper wire turned out to be the best choice.

Although there is no practical use for this device that we can see, the craftsmanship is excellent, and it is one of those videos that reminds us how badly we want some machine tools.

Fine attention to detail is really what makes videos like this enjoyable to watch. Wee seen a few other such project, like a beautiful scratch-built lathe, or a pneumatic powered drone that can’t fly.

Continue reading “Tiny Chain-Link Fence Made With Hand-Cranked Brilliance”

Five-Axis Pumpkin Carving

The day of carved pumpkins is near, and instead of doing manually like a mere mortal, [Shane] of [Stuff Made Here] built a five-axis CNC machine to take over carving duties. (Video, embedded below.)

[Shane] initially intended to modify his barber robot, but ended up with a complete redesign, reusing only the electronics and the large ring bearing in the base. The swiveling spindle is a rotating gantry with two sets of aluminum extrusions for vertical and horizontal motion. The gantry isn’t very rigid, but it’s good enough for pumpkin carving. Software is the most challenging part of the endeavor due to the complexity of five-axis motion and mapping 2D images onto a roughly spherical surface. Cartographers have dealt with this for a long time, so [Shane] turned to Mercator projection to solve the problem. We’re also relieved to hear that we aren’t the only ones who sometimes struggle with equation-heavy Wikipedia pages.

Since there are no perfectly spherical pumpkins, [Shane] wrote a script to probe the surface of the pumpkin with a microswitch before cutting, appropriately named “TSA.exe”. The machine is capable of carving both profiles and variable depth lithophanes, mostly of [Shane]’s long-suffering wife. She seriously deserves an award for holding onto her sense of humor.

With projects like explosive baseball bats and CNC basketball hoop, the [Stuff Made Here] YouTube Channel is worth keeping an eye on.

Bantam Tools PCB Mill Gets A Ferocious New Sequel

When the first Bantam Tools’ Milling Machine landed, it put PCB prototyping at the forefront with a smooth software and hardware pipeline for spinning out circuit boards in a manner of minutes. Now the folks at Bantam Tools are back, putting those insights into a new machine that makes cutting aluminum a first class feature. While machine details are still sparse from their announcement page, knowing that Bantam Tools has spent a few years turning classrooms of students into hardware prototypes reassures us that we’re in good hands. Now let’s spill some beans on this beast. Continue reading “Bantam Tools PCB Mill Gets A Ferocious New Sequel”