Gym Equipment Converted To Generator

Energy cannot be created or destroyed, but the most likely eventual conclusion of changing it from one form or another will be relatively useless heat. For those that workout with certain gym equipment, the change from chemical energy to heat is direct and completely wasted for anything other than keeping in shape. [Oliver] wanted to add a step in the middle to recover some of this energy, though, and built some gym equipment with a built-in generator.

Right now he has started with the obvious exercise bike stand, which lends itself to being converted to a generator quite easily. It already had a fairly rudimentary motor-like apparatus in it in order to provide mechanical resistance, so at first glance it seems like simply adding some wires in the right spots would net some energy output. This didn’t turn out to be quite so easy, but after a couple of attempts [Oliver] was able to get a trickle of energy out to charge a phone, and with some more in-depth tinkering on the motor he finally was able to get a more usable amount of energy to even charge a laptop.

He estimates around 30 watts of power can be produced with this setup, which is not bad for a motor that was never designed for anything other than mechanical resistance. We look forward to seeing some other equipment converted to produce energy too, like a rowing machine or treadmill. Or, maybe take a different route and tie the exercise equipment into the Internet connection instead.

Geothermal System Is A Real Gold Mine

What do you get when Pacific Northwest National Laboratories takes over what was once the largest and deepest gold mine in North America? The answer might be enough energy to power 10,000,000 homes. The enhanced geothermal systems project includes the lab and several partners from academia and industry and aims to test sending fluids down boreholes so the Earth can heat them up. Hot fluids, of course, can easily create electricity.

At 4,100 feet underground, the old mine is not very convenient to get to. However, modern technology means that the equipment is largely automated so workers can carry out experiments from home using a computer or even a phone. The system itself is 7 feet long by 7 feet wide and 30 feet long. It was assembled above ground, tested, and then split into 4×4 sections for transportation deep below the surface.

Continue reading “Geothermal System Is A Real Gold Mine”

2022 Hackaday Prize: Get Your Planet-Friendly Power On!

Time flies! This weekend marks the end of the first stage of the 2022 Hackaday Prize, and your chance to enter your alternative-energy projects. There are ten $500 prizes up for grabs, and there’s still time to whip up a project page over on Hackaday.io to showcase it.

In this round, we’re looking for projects that harvest their own energy — solar, wind, heat, vibration, you name it — or projects that make it easier to collect, store, or use renewable energy. Whether this is microwatts or megawatts, the scale of the project is up to you! As long as it’s using or making it easier to use clean energy, we want to see it.

So far, we’ve seen some great projects, ranging from a optimizes the tilt angle of a home solar installation to a demonstration of using a new type of lithium-ion capacitor to add solar power to smaller projects. We really love [MartMet]’s simple Bluetooth thermometer hack, which adds a supercapacitor and solar cell to an outdoor thermometer, and then uses hacked firmware to log the charge status over a year of use! We’re suckers for good data.

The sun is not the only game in town, though. There are a surprising number of projects based on human energy production in emergency situations, from cranking to shaking. Thermionic converters were new to us, but we love explorations of fringe tech. Other traditional favorites like wind and water may make more sense for larger applications. And don’t forget how you’re going to store all this juice you’ve collected.

In short, we’ve got a bunch of great entries, but we’re still missing yours! There’s no minute like the last minute: if you’ve done some work in clean or renewable energy, set yourself up a Hackaday.io project page now. You’ll help make all our projects cleaner, and stand a good chance of taking home some real money to boot!

Once we’ve handled power, the next round is “Reuse, Recycle, Revamp” where any tech that uses recycled parts or facilitates reuse, repair, or recycling is fair game!

High Temp Heat Engine Achieves 40% Efficiency

People generate lots of waste heat. It makes sense that there is a desire to convert that heat into usable energy. The problem is one of efficiency. Researchers from MIT and the National Renewable Energy Lab have announced a new heat converter that they claim has 40% efficiency. Of course, there’s a catch. The temperature range for the devices starts at 1,900 °C .

The thermophotovoltaic cells are tandem devices with two cells mated on one substrate. Each cell is multiple layers of very thin and somewhat exotic materials. So this probably isn’t something you will cobble up in your basement anytime soon unless you’re already manufacturing ICs down there. It appears that the secret is in the multiple layers including a reflective one that sends any missed photons back through the stack.

The paper is pretty dense, but there’s a Sunday-supplement summary over on the MIT site. Using heat storage leads to the ability to make heat batteries, more or less, and harness what would otherwise be waste energy.

We’ve noticed a lot of interest in drawing power from hot pipes lately. All of them techniques we’ve seen rely on some kind of exotic materials.

Low Power Mode For Custom GPS Tracker

GPS has been a game-changing technology for all kinds of areas. Shipping, navigation, and even synchronization of clocks have become tremendously easier thanks to GPS. As a result of its widespread use, the cost of components is also low enough that almost anyone can build their own GPS device, and [Akio Sato] has taken this to the extreme with efforts to build a GPS tracker that uses the tiniest amount of power.

This GPS tracker is just the first part of this build, known as the air station. It uses a few tricks in order to get up to 30 days of use out of a single coin cell battery. First, it is extremely small and uses a minimum of components. Second, it uses LoRa, a low-power radio networking method, to communicate its location to the second part of this build, the ground station. The air station grabs GPS information and sends it over LoRa networks to the ground station which means it doesn’t need a cellular connection to operate, and everything is bundled together in a waterproof, shock-resistant durable case.

[Akio Sato] imagines this unit would be particularly useful for recovering drones or other small aircraft that can easily get themselves lost. He’s started a crowdfunding page for it as well. With such a long battery life, it’s almost certain that the operator could recover their vessel before the batteries run out of energy. It could also be put to use tracking things that have a tendency to get stolen.

Careful Cuts Lets Logger Last A Year On A Coin Cell

Coin cells are great for backup power for things like real-time clocks, or even for powering incredibly small mechanical devices like watches. But for something like a data logger, running on a standard microcontroller, most people would reach for a lithium cell of some sort. Not so with this build, though, which squeezes every joule of energy from a coin cell in order to run a data logger for a full year.

Won’t be needing that anymore.

Most of the design and engineering required to improve the efficiency of the data logger involve standard practices for low-power devices such as shutting off unnecessary components and putting the device to sleep when not actively running, but this build goes far beyond that. The Vcc pin on the RTC was clipped which disables some of its internal logic but still keeps its basic functionality intact.

All of the voltage regulators were removed or disabled in favor of custom circuitry that doesn’t waste as much energy. The status and power LEDs were removed where possible, and the entire data logger is equipped with custom energy-efficient code as well.

If you’re starting a low-power project, even one that isn’t a datalogger, it’s worth checking out this build to see just how far you can go if you’re willing to hack at a PCB with cutting tools and a soldering iron. As to why this data logger needed such a low power requirement, it turns out it’s part of a kit being used in classrooms and using a coin cell brought the price of the entire unit down tremendously. Even if you have lithium cells on hand, though, it’s still worthwhile to check out the low power modes of your microcontroller.

Thanks to [Adrian] for the tip!

A bee pollinates a flower.

Even Bees Are Abuzz About Caffeine

Many of us can’t get through the day without at minimum one cup of coffee, or at least, we’d rather not think about trying. No matter how you choose to ingest caffeine, it is an awesome source of energy and focus for legions of hackers and humans. And evidently, the same goes for pollinator bees.

You’ve probably heard that there aren’t enough bees around anymore to pollinate all the crops that need pollinating. That’s old news. One solution was to raise them commercially and then truck them to farmers’ fields where they’re needed. The new problem is that the bees wander off and pollinate wildflowers instead of the fields they’re supposed to be pollinating. But there’s hope for these distracted bees: Scientists at the University of Greenwich have discovered that bees under the influence of caffeine are more likely to stay on track when given a whiff of the flower they’re supposed to be pollinating.

Continue reading “Even Bees Are Abuzz About Caffeine”