How To Get Into Cars: Ice Racing Mods

Typically, when it comes to inclement weather, ice is the worst of the worst of driving conditions. Regular tyres have little to no grip in such situations, and accidents are common. However, some choose to laugh at such challenges, and take to racing out on frozen lakes and rivers. The sport of ice racing can be a demanding one, though, so you’ll need to prep your car appropriately. Here’s how.

Ice, Ice, Baby

The highest tier of ice racing is the Andros Trophy, conducted in France each year. Competitors in the top class compete in mid-engined V6-powered cars with AWD and four-wheel steering.

Ice racing is largely limited to colder climates where lakes, rivers, or even actual racetracks freeze over in the winter. While some limited ice racing does occur indoors on skating rinks, it’s largely limited to motorcycles and ATVs because such facilities are just too small for cars.

The weather-dependent and esoteric nature of ice racing means that it exists at the fringes of organised motorsport, with most events being community-run at the grassroots level. Often, new competitors will start in a “run-what-you-brung” class, with unmodified street cars competing in limited or no-contact events, such as time trials or drag races. Higher tiers then generally necessitate more serious preparation and safety equipment, such as rollcages and fire extinguishers, and competitive door-to-door racing on larger tracks. However, some professional competitions do exist, running bespoke tube-framed cars built for purpose. The most notable of these is the Andros Trophy, held in the French Alps and run by the namesake jam company. Continue reading “How To Get Into Cars: Ice Racing Mods”

Growing The World’s Largest Snowflake

Plenty of areas around the world don’t get any snowfall, so if you live in one of these places you’ll need to travel to experience the true joy of winter. If you’re not willing to travel, though, you could make some similar ice crystals yourself instead. While this build from [Brian] aka [AlphaPhoenix] doesn’t generate a flurry of small ice crystals, it does generate a single enormous one in a very specific way.

The ice that [Brian] is growing is created in a pressure chamber that has been set up specifically for this hexagonal crystal. Unlike common ice that is made up of randomly arranged and varying crystals frozen together, this enormous block of ice is actually one single crystal. When the air is pumped out of the pressure chamber, the only thing left in the vessel is the seed crystal and water vapor. A custom peltier cooler inside with an attached heat sink serves a double purpose, both to keep the ice crystal cold (and growing) and to heat up a small pool of water at the bottom of the vessel to increase the amount of water vapor in the chamber, which will eventually be deposited onto the crystal in the specific hexagonal shape.

The build is interesting to watch, and since the ice crystal growth had to be filmed inside of a freezer there’s perhaps a second hack here which involved getting the camera gear set up in that unusual environment. Either way, the giant snowball of an ice crystal eventually came out of the freezer after many tries, and isn’t the first time we’ve seen interesting applications for custom peltier coolers, either.

Continue reading “Growing The World’s Largest Snowflake”

Hackaday Links: March 7, 2021

It’s March, which means Keysight is back in the business of giving away a ton of test gear. Keysight University Live starts on March 15, with daily events the first week followed by a string of weekly live events through April. We always enjoy these Keysight events; sure, they’re clearly intended to sell more gear, but the demos and tutorials are great, and we always learn a lot. There’s also a feeling of community that feels similar to the Hackaday community; just a bunch of electronics nerds getting together to learn and share. If you’re interested in that community, or even if you’re just looking for a chance to win something from the $300,000 pile of goodies, you’ll need to register.

There’s another event coming up that you’ll want to know about: the 2021 Open Hardware Summit. Because 2021 is the new 2020, the summit is being held virtually again, this year on April 9. Tickets are on sale now, and we’re told there are still plenty of Ada Lovelace Fellowships available to those who consider themselves to be a minority in tech. The Fellowship covers the full cost of a ticket; it usually covers travels costs too, but sadly we’re still not there yet.

Once we do start traveling again, you might need to plan more carefully if cities start following the lead of Petaluma, California and start banning the construction of gas stations. The city, about 40 miles (64 km) north of San Francisco, is believed to be the first city in the United States to ban new gas station construction. The city council’s decision also prevents gas station owners from expanding, reconstructing, or relocating existing gas stations. The idea is to create incentives to move toward non-fossil fuel stations, like electric vehicle charging stations and hydrogen fueling. Time will tell how well that works out.

Go home Roomba — you’re drunk. That could be what Roomba owners are saying after an update semi-bricked certain models of the robotic vacuum cleaners. Owners noted a variety of behaviors, like wandering around in circles, bumping into furniture, and inability to make its way back to base for charging. There’s even a timelapse on reddit of a Roomba flailing about pathetically in a suspiciously large and empty room. The drunken analogy only goes so far, though, since we haven’t seen any reports of a Roomba barfing up the contents of its dust bin. But we’re still holding out hope.

And finally, if you’re not exactly astronaut material but still covet a trip to space, you might luck out courtesy of Japanese billionaire Yusaku Maezawa. He’s offering to pay the way for eight people from around the world on a planned flight to the Moon and back in 2023. Apparently, Maezawa bought up all the seats for the flight back in 2018 with the intention of flying a group of artists to space. His thinking has changed, though, and now he’s opening up the chance to serve as ballast join the crew to pretty much any rando on the planet. Giving away rides on Starship might be a harder sell after this week’s test, but we’re sure he’ll find plenty of takers. And to be honest, we wish the effort well — the age of routine civilian space travel can’t come soon enough for us.

Wind Turbines And Ice: How They’re Tailored For Specific Climates

Wind turbines are incredible pieces of technology, able to harvest wind energy and deliver it to the power grid without carbon emissions. Their constant development since the first one came online in 1939 mean that the number of megawatts produced per turbine continues to rise as price per megawatt-hour of wind energy continues to fall. Additionally, they can operate in almost any climate to reliably generate energy almost anywhere in the world from Canada to the North Atlantic to parts beyond. While the cold snap that plowed through the American South recently might seem to contradict this fact, in reality the loss of wind power during this weather event is partially a result of tradeoffs made during the design of these specific wind farms (and, of course, the specifics of how Texas operates its power grid, but that’s outside the scope of this article) rather than a failure of the technology itself.

First, building wind turbines on the scale of megawatts isn’t a one-size-fits-all solution. Purchasing a large turbine from a company like GE, Siemens, or Vestas is a lot like buying a car. A make and model are selected first, and then options are selected for these base models. For example, low but consistent wind speeds demand a larger blade that will rotate at a lower speed whereas areas with higher average wind speeds may be able to get by with smaller and less expensive blades for the same amount of energy production. Another common option for turbines is cold weather packages, which include things like heaters for the control systems, hydraulics, and power electronics, additional insulation in certain areas, and de-icing solutions especially for the turbine blades.

In a location like Texas that rarely sees cold temperatures for very long, it’s understandable that the cold weather packages might be omitted to save money during construction (although some smaller heaters are often included in critical areas to reduce condensation or humidity) but also to save on maintenance as well: every part in a wind turbine has to be maintained. Continuing the car analogy, it’s comparable to someone purchasing a vehicle in a cold climate that didn’t come equipped with air conditioning to save money up front, but also to avoid repair costs when the air conditioning eventually breaks. However, there are other side effects beyond cost to be considered when installing equipment that’s designed to improve a turbine’s operation in cold weather.

Let’s dig into the specifics of how wind turbine equipment is selected for a given wind farm.

Continue reading “Wind Turbines And Ice: How They’re Tailored For Specific Climates”

Electric Airboat For Getting You Across Thin Ice

Even with all the technological progress civilization has made, weather and seasons still have a major impact on our lives. [John de Hosson] owns a cabin on an island in a Swedish lake, and reaching it involves crossing 500 m of water. In summer this is done with a conventional boat, and in winter they can simply walk across the thick ice, but neither of these is an option on thin ice in the spring or fall. To solve this [John] built an electric airboat, and it looks like a ton of fun in the video after the break

The construction is simple but functional. A 3.3 m flat-bottomed aluminum boat has used a base, and an aluminum frame was bolted on for the motor and propeller. The motor is an 18 kW brushless motor, with a 160 cm/63-inch carbon fiber propeller. Power comes via a 1000 A ESC from a 100V 3.7 kWh Lipo pack mounted in a plastic box. Steering is very similar to a normal airboat, with a pair of air rudders behind the propeller, controlled by a steering lever next to the driver’s seat. The throttle is an RC controller with the receiver wired to the ESC.

Performance is excellent, and it accelerates well on ice and slush, even with two people on board. [John] still plans to make several improvements, with a full safety cage around the propeller being at the top of the list. He is also concerned that it will capsize on the water with the narrow hull, so a wider hull is planned. [John] has already bought a large steering servo to allow full remote control for moving cargo, with the addition of an FPV system. We would also add an emergency kill switch and waterproofing for the electronics to the list of upgrades. It looks as though the battery box is already removable, which is perfect for getting it out of the cold when not in use.

Continue reading “Electric Airboat For Getting You Across Thin Ice”

Electric Vehicles On Ice

This winter, a group of electric vehicle enthusiasts, including [Dane Kouttron], raced their homemade electric go-karts on the semi-frozen tundra nearby as part of their annual winter tradition. These vehicles are appropriately named Atomic Thing and Doom Sled, and need perfect weather conditions to really put them to the test. You want a glass-like race track but snowfall on ice freezes into an ice-mush intermediate that ends up being too viscous for high-speed ice vehicles. The trick is to watch for temperatures that remain well below zero without snow-like precipitation.

The group is from the community makerspace out of MIT known as MITERS and already have EV hacking experience. They retrofitted their VW Things vehicle (originally built for a high speed electric vehicle competition) to squeeze even more speed out of the design. Starting out with an 8-speed Shimano gearbox and a 7kW motor, they assembled a massive 24S 10P battery out of cylindrical A123 cells salvaged from a Prius A123 Hymotion program. This monster operates at 84V with a 22AH capacity, plenty for power for the team to fully utilize the motor’s potential.

The battery is ratchet strapped to the back of the Atomic Thing to provide more traction on the ice. It must feel just like riding on top of a different kind of rocket.

They tried using ice skates in the front of the Atomic Thing, but the steering was difficult to control over rough ice. Studded solid tires perform quite well, resulting in less jarring movement for the driver. Doom Sled is a contraption built from a frame of welded steel tube and a mountainboard truck with ice skate blades for steering. The motor — a Motenegy DC brush [ME909] — was salvaged from a lab cleanout, transferring power to the wheels through a chain and keyed shaft. The shaft-to-wheel torque was duly translated over two keyed hub adapters.

Doom Sled with seat strapped on

The crew fitted a seat from a longscooter and made a chain guard from aluminum u-channel to keep the flying chain away from the driver’s fingers. The final user interface includes a right-hand throttle and a left-hand “electric brake” (using resistors to remove the stored energy quickly to combat the enormous inertia produced by the vehicle).

Overall, ice racing was a success! You can see the racing conditions were just about perfect, with minimal ice mush on the lake. Any rough patches were definitely buffered smooth by the end of the day.

Continue reading “Electric Vehicles On Ice”

Electronics On Ice

We see all manner of electronics enclosures pass through these hallowed pages. Lasercut wooden builds with fancy kerf bending, expertly prepared acrylic boxes, and even the occasional device cast in concrete. [Mike Kohn] decided that all of these were too permanent, however, and chose a different material – ice.

[Mike] shares the ups and downs of his experiments with electronics and frozen water. Initial tests with a circuit sealed in DAP Ultra Clear were largely successful.  A tilt sensor was installed to allow the batteries to remain undrained during the freezing process, and once freed after a few hours of thawing, the circuit was operational. Later builds required some more work – the RC car in particular took a few attempts to avoid the mold leaking. The ice hands are a particular highlight, though – created with rubber gloves, these would be a remarkably spooky decoration come Halloween.

It’s a study in the techniques required to work with this ephemeral material, and there’s a few lessons to learn. Sealing electronics is good, and the best results are with simple circuits with a few LEDs that make everything glow nicely.

If you’re looking for other ideas, you could always create a frozen lens for photographical purposes. Video after the break.

Continue reading “Electronics On Ice”