Close up of a Dutch etymology dictionary showing Esperanto, and a candle

Esperanto: The Language That Hoped To Unite The World

Christmas: a good time to broach a topic of hope. We’re talking Esperanto. This language that spurred the hope it one day could hack the barriers between people, eliminating war and miscommunication. The video below unpacks the history of this linguistic marvel. Esperanto was a constructed language dreamed up in 1887 by Ludwik Zamenhof, a Polish-Russian eye doctor with a knack for linguistics and great ideals. If you’re a little into linguistics yourself, you’ll sure know the name stems from the Latin sperare: to hope.

Inspired by the chaos of multilingual strife in his hometown, Zamenhof created Esperanto to unite humanity under a single, simple, easy-to-learn tongue. With just 16 grammar rules, modular word-building, and no pesky exceptions — looking at you, English — Esperanto was a linguistic hack ahead of its time.

But Esperanto wasn’t just a novelty—it almost became the lingua franca of diplomacy. In 1920, Iran proposed Esperanto as the official language of the League of Nations, but the French vetoed it, fearing their language’s global dominance was at risk. From there, Esperanto’s journey took a darker turn as both Nazi Germany and Stalinist Russia persecuted its speakers. Despite this, Esperanto persisted, surfacing in quirky corners of culture, from William Shatner’s Esperanto-only horror film Incubus to its inclusion on NASA’s Voyager Golden Record.

Fast-forward to the digital age: Esperanto is thriving on online learning platforms, where over a million learners explore its minimalist elegance. It appears at places in various editions of Grand Theft Auto. It has even inspired modern makers to create new constructed languages, like Loglan, Toki Pona, and even Klingon. Could Esperanto—or any reimagined language—rise again to unite us? For curious minds, watch the video here.

Continue reading “Esperanto: The Language That Hoped To Unite The World”

Hackaday Podcast 003: Igloos, Lidar, And The Blinking LED Of RF Hacking

It’s cold outside! So grab a copy of the Hackaday Podcast, and catch up on what you missed this week.

Highlights include a dip into audio processing with sox and FFMPEG, scripting for Gmail, weaving your own carbon fiber tubes, staring into the sharpest color CRT ever, and unlocking the secrets of cheap 433 MHz devices. Plus Elliot talks about his follies in building an igloo while Mike marvels at what’s coming out of passive RFID sensor research.

And what’s that strange noise at the end of the podcast?

Take a look at the links below if you want to follow along, and as always, tell us what you think about this episode in the comments!

Direct download (60 MB or so.)

Continue reading “Hackaday Podcast 003: Igloos, Lidar, And The Blinking LED Of RF Hacking”

Building And Controlling 19 LEDs & Five Buttons From Five Outputs

Numbers are hard enough in English, but [Sadale] decided to take things a step further by building a calculator that works in Toki Pona. The result is Ilo Nanpa, an awesome hardware calculator that works in this synthetic minimal language. This is a bit harder than you might think, because Toki Pona doesn’t have digits in the same way that Neo-Latin languages like English do. Instead, you combine smaller numbers to make bigger ones. One is Wan, Two is Tu, but three is Wan Tu (1+2). As you might expect, this makes dealing and representing larger numbers somewhat complicated.

Ilo Nanpa gets around this in a wonderfully elegant way, and with some impressive behind the scenes work. The calculator has 16 LEDs, nine buttons and a slider switch, but they are all controlled and read through just five IO pins on the STM8S001J3 controller that runs the device.

That’s because {Sadale] did some remarkable work with multiplexing and charlieplexing. Multiplexing is controlling more outputs than there are control inputs by using rows and columns: it is how the LED display you are probably reading this on can be controlled by just a few wires. By switching through these rows and columns at a higher speed than the eye can see, you create the illusion of a single, continuous display.

Charlieplexing takes this a step further by using multiple voltages on a single connection to further split the signal. With the clever use of voltage dividers the directional properties of LEDs and multiple voltage levels, the Ilo Nanpa runs all of the LEDs and senses all of the buttons and the slider from just five pins. That’s a remarkably neat piece of design, and it is worth spending some time looking over the excellent explanation of the process that [Sadale] wrote to see how it is done, and poring over the code for the device to see how he programmed this all into a single low powered chip. And, while you are reading, you might pick up a few words of Toki Pona. Tawa Pona!

Continue reading “Building And Controlling 19 LEDs & Five Buttons From Five Outputs”