English Words In French Gaming? Non Merci!

Are you a gamer? If you’re French, it seems that you shouldn’t be using so much English in pursuit of your goals.

It’s a feature of an active language, that it will readily assimilate words from others. Pizza, karaoke, vuvuzela, parka, gateau, schadenfreude, they have all played their part in bringing a little je ne sais quoi into our everyday speech. This happens as a natural process as whatever the word is describing becomes popular, and sometimes these new words cause a backlash from those who see themselves as the language’s defenders.

Often this is a fringe activity such as the British politician who made a fool of himself in a radio interview by insisting on the now-archaic Wade-Giles “Peking” rather than the vastly more common Pinyin “Beijing”, but for some tongues it’s no laughing matter. Nowhere is this more the case than in the Francophone world, in which the Academie Francaise and the French and Quebecquois governments see themselves as very much the official guardians of French. And now it seems that the French ministry of culture have turned their eyes upon gamers.

It’s nothing new for words associated with technology to fall under this scrutiny, a quarter century ago in the CD-ROM business it was de rigeur for localized discs to talk about le logicel, l’ordinateur, and telecharger instead of program, computer, and download. The talk of the industry was that Sony refused to do this for PlayStation consoles sold in Quebec during the 1990s, and thus all their sales in the province had to be under-the-counter. But there’s a sense from reading the reports that this intervention is a little clumsy; while it’s easy to say logicel we’re not so sure that jeu video de competition  or video game competition for e-sports and joueur-animateur en direct or live player-animator for streamer aren’t just too much of a mouthful for easy adoption. For the first one, we can’t help remembering that sport is also an everyday French word, so couldn’t they have come up with something less clumsy such as reseau-sports or network-sports?

Here at Hackaday more than one of us are unrepentant Francophiles, so the evolution of French words in our field is of interest to us. Habitez-vous en France ou Quebec? Donnez-nous votres idees dans les commentaires! (mais en Anglais s’il vous plait pour les Americains, excusez-nous)

Header image: Christopher Macsurak, CC BY-SA 4.0.

A Programming Language To Express Programming Frustration

Programming can be a frustrating endeavor. Certainly we’ve all had moments, such as forgetting punctuation in C or messing up whitespace in Python. Even worse, an altogether familiar experience is making a single change to a program that should have resulted in a small improvement but instead breaks the program. Now, though, there’s a programming language that can put these frustrations directly into the code itself into a cathartic, frustration-relieving syntax. The language is called AHHH and it’s quite a scream.

While it may not look like it on the surface, the language is Turing complete and can be used just like any other programming language. The only difference is that there are only 16 commands in this language which are all variants of strings of four capital- or lower-case-H characters. The character “A” in the command “AHHH” starts the program, and from there virtually anything can be coded as a long, seemingly unending scream. The programming language is loosely related to COW which uses various “moos” to create programs instead of screams, and of course is also distantly related to brainfuck which was an esoteric programming language created in order to have the smallest possible compiler.

We can’t really recommend that beginner programmers start to learn this language instead of something more practical like Python, esoteric languages like these can teach us a lot about the way that computers work. This language, for example, lets you code in pixels instead of characters. Others are more for fun such as this language which turns your code into an ’80s rock ballad.

Thanks to [Kyle F] for the tip!

Greeking Out With Arduinos

Learning a new language is hard work, but they say that the best way to learn something is to teach it. [Angeliki Beyko] is learning Greek, and what better way to teach than to build a vocabulary flash-card game from Arduinos, color screens, 1602 text screens, and arcade buttons? After the break, we have a video from the creator talking about how to play, the hardware she chose, and what to expect in the next version.

Pegboard holds most of the hardware except the color screens, which are finicky when it comes to their power source. The project is like someone raided our collective junk drawers and picked out the coolest bits to make a game. Around the perimeter are over one hundred NeoPixels to display the game progress and draw people like a midway game. Once invested, you select a category on the four colored arcade buttons by looking at the adjacent LCD screens’ titles. An onboard MP3 shield reads a pseudo-random Greek word and displays it on the top-right 1602 screen in English phonetics. After that, it is multiple choice with your options displaying in full-color on four TFT monitors. A correct choice awards you a point and moves to the next word, but any excuse to mash on arcade buttons is good enough for us.

[Angeliki] does something we see more often than before, she’s covering what she learned, struggled with, would do differently, and how she wants to improve. We think this is a vital sign that the hacker community is showcasing what we already knew; hackers love to share their knowledge and improve themselves.

Typing Greek with a modern keyboard will have you reaching for an alt-code table unless you make a shortcut keyboard, and if you learn Greek, maybe you can figure out what armor they wore to battle.

Continue reading “Greeking Out With Arduinos”

Updating The Language Of SPI Pin Labels To Remove Casual References To Slavery

This morning the Open Source Hardware Association (OSHWA) announced a resolution for changing the way SPI (Serial Peripheral Interface) pins are labelled on hardware and in datasheets. The protocol originally included MOSI/MISO references that stand for “Master Out, Slave In” and “Master In, Slave Out”. Some companies and individuals have stopped using these terms over the years, but an effort is being taken up to affect widespread change, lead by Nathan Seidle of Sparkfun.

The new language for SPI pin labeling recommends the use of SDO/SDI (Serial Data Out/In) for single-role hardware, and COPI/CIPO for “Controller Out, Peripheral In” and “Controller In, Peripheral Out” for devices that can be either the controller or the peripheral. The change also updates the “SS” (Slave Select) pin to use “CS” (Chip Select).

SPI is widely used in embedded system design and appears in a huge range of devices, with the pin labels published numerous times in everything from datasheets and application notes to written and video tutorials posted online. Changing the labels removes unnecessary references to slavery without affecting the technology itself. This move makes embedded engineering more inclusive, an ideal that’s easy to get behind.

[2022 Editor’s Note: The OSHWA changed its recommended naming to PICO/POCI for “Peripheral In, Controller Out” and “Peripheral Out, Controller In”. Fine by us! I’ve updated this throughout the rest of the article because it doesn’t change Mike’s original argument at all.]

Continue reading “Updating The Language Of SPI Pin Labels To Remove Casual References To Slavery”

Python And The Internet Of Things Hack Chat

Join us Wednesday at noon Pacific time for the Python and the Internet of Things Hack Chat!

Opinions differ about what the most-used programming language in right now is, but it’s hard to deny both the popularity and versatility of Python. In the nearly 30 years since it was invented it has grown from niche language to full-blown development environment that seems to be everywhere these days. That includes our beloved microcontrollers now with MicroPython, and Adafruit’s CircuitPython, greatly lowering the bar for entry-level hackers and simplifying and speeding development for old hands and providing a path to a Python-powered Internet of Things.

The CircuitPython team from Adafruit Industries – Dan Halbert​, Kattni Rembor​, Limor “Ladyada” Fried​, Phillip Torrone​, and Scott Shawcroft – will drop by the Hack Chat to answer all your questions about Python and the IoT. Join us as we discuss:

  • How CircuitPython came to be;
  • The range of IoT products that support Python;
  • Getting started with Python on IoT devices; and
  • What’s on the horizon for a Python-powered IoT?

And as extra enticement, we’ll be giving away five free one-year passes to ​Adafruit.io​! We’ll draw five names at random from the list of Hack Chat attendees. Stop by for a chance to win. And, the Adafruit team will be streaming video live during the Hack Chat as well.

You are, of course, encouraged to add your own questions to the discussion. You can do that by leaving a comment on the Python and the Internet of Things Hack Chat and we’ll put that in the queue for the Hack Chat discussion.

join-hack-chatOur Hack Chats are live community events on the Hackaday.io Hack Chat group messaging. This week we’ll be sitting down on Wednesday, April 3, at noon, Pacific time. If time zones have got you down, we have a handy time zone converter.

Click that speech bubble to the right, and you’ll be taken directly to the Hack Chat group on Hackaday.io. You don’t have to wait until Wednesday; join whenever you want and you can see what the community is talking about.

Want a quick peek at what’s possible with CircuitPython? Check out this PyPortal event countdown timer that just happens to be counting down the hours till the next Hack Chat.

Learn To Optimize Code In Assembly… For Android

When programming a microcontroller, there are some physical limitations that you’ll come across much earlier than programming a modern computer, whether that’s program size or even processor speed. To make the most use of a small chip, we can easily dig into the assembly language to optimize our code. On the other hand, modern processors in everyday computers and smartphones are so fast and have so much memory compared to microcontrollers that this is rarely necessary, but on the off-chance that you really want to dig into the assembly language for ARM, [Uri Shaked] has a tutorial to get you started.

The tutorial starts with a “hello, world” program for Android written entirely in assembly. [Uri] goes into detail on every line of the program, since it looks a little confusing if you’ve never dealt with assembly before. The second half of the program is a walkthrough on how to actually execute this program on your device by using the Android Native Deveolpment Kit (NDK) and using ADB to communicate with the phone. This might be second nature for some of us already, but for those who have never programmed on a handheld device before, it’s worthwhile to notice that there are a lot more steps to go through than you might have on a regular computer.

If you want to skip the assembly language part of all of this and just get started writing programs for Android, you can download an IDE and get started pretty easily, but there’s a huge advantage to knowing assembly once you get deep in the weeds especially if you want to start reverse engineering software or bitbanging communications protocols. And if you don’t have an Android device handy to learn on, you can still learn assembly just by playing a game.

The rust language logo being branded onto a microcontroller housing

Baremetal Rust On The Horizon

Rust Programming Langauge has grown by leaps and bounds since it was announced in 2010 by Mozilla. It has since become a very popular language owing to features such as memory safety and its ownership system. And now, news has arrived of an Embedded Devices Working Group for Rust aiming at improving support for microcontrollers.

Rust is quite similar to C++ in terms of syntax, however Rust does not allow for null or dangling pointers which makes for more reliable code in the hands of a newbie. With this new initiative, embedded development across different microcontroller architectures could see a more consistent and standardized experience which will result in code portability out of the box. The proposed improvements include IDE and CLI tools for development and setup code generation. There is also talk of RTOS implementations and protocol stack integration which would take community involvement to a whole new level.

This is something to be really excited about because Rust has the potential to be an alternative to C++ for embedded development as rust code runs with a very minimal runtime. Before Arduino many were afraid of the outcome of a simple piece of code but with rust, it would be possible to write memory-safe code without a significant performance hit. With a little community support, Rust could be a more efficient alternative. We have seen some Rust based efforts on ARM controllers and have covered the basics of Rust programming in the past if you want to get started. Good times ahead for hardware hackers.