Vive Tracker Brings Easier VR Hacking

CES 2017 is over and there were VR gadgets and announcements aplenty, but here’s an item that’s worth an extra mention because it reflects a positive direction we can’t wait to see more of. HTC announced the Vive Tracker, to be released within the next few months.

The Tracker looks a bit like a cross between a hockey puck and a crown. It is a self-contained, VR trackable device with a hardware port and built-in power supply. It can be used on its own or attached to any physical object to make that object trackable and interactive in VR. No need to roll your own hardware to interface with the Vive’s Lighthouse tracking system.

Valve have been remarkably open about the technical aspects of their hardware and tracking system, and have stated they want to help people develop their own projects using the system. We’ve seen very frank and open communication on the finer points of what it took to make the Lighthouse system work. Efforts at reverse-engineering the protocol used by the controller even got friendly advice. For all the companies making headway into VR, Valve continues to be an interesting one from a hacking perspective.

[Image source for bottom of Tracker: RoadToVR]

 

David Krum: The Revolution In Virtual Reality

[David Krum] is associate lab director at the Mixed Reality Lab at the Institute for Creative Technologies at USC. That puts him at the intersection of science and engineering: building cool virtual reality (VR) devices, and using science to figure out what works and what doesn’t. He’s been doing VR since 1998, so he’s seen many cool ideas come and go. His lab was at the center of the modern virtual reality explosion. Come watch his talk and see why!

Continue reading “David Krum: The Revolution In Virtual Reality”

Making VR Controllers From The Ground Up

VR is going to be the next big thing in five to seven years, and with that comes the problem of what the controllers will look like. The Vive and PS Move are probably close to what the first successful consumer VR setup will look like, but there’s plenty of room for experimentation. [ShinyQuagsire] decided to experiment with VR, IMUs, and computer vision and managed to make a VR controller from the ground up.

The design of [Quagsire]’s VR controller is very similar to the PS Move controller: there’s a glowy ball on top of a Wii-nunchuckish controller. There’s a good reason for this design: a sphere projected onto a 2D surface is always a circle. By illuminating a sphere with an IR LED, [Quagsire] can get an OpenCV script to hone in on the controller.

One thing that was particularly hard for [Quagsire] was building the 3D printed controllers. The first hardware revision wasn’t designed for manufacturing on a 3D printer — there were curves everywhere and very few flat areas for bed adhesion. The second hardware revision corrected these problems, but there’s a world of difference between designing a 3D printable part and being able to calibrate and tune a 3D printer. In the end, [Quagsire] sent the files off to 3DHubs to put that whole ordeal behind him.

With the case printed, [Quagsire] filled it with IMU breakouts, buttons, and a tiny joystick. The brains of the controller is a Teensy 3.2 that has plenty of examples of how to transmit gyro data and button presses over serial. With that done, the only thing left to do was to tie everything together.

The controller worked, and [Quagsire] learned a lot in the process. Making VR controllers is hard, even though a lot of the project isn’t the optimal way of doing things. For the next iteration of this project, [Quagsire] might look at wireless, but for now the entire project is up on Github for everyone to take a look at.

The Ninja Run: A VR Movement Experiment

VR is an area that is seeing plenty of DIY experimentation, and [FultonX] has an interesting hack of sorts in that he’s discovered something that meshes well with how we perceive motion and movement. It’s an experimental movement system for VR he calls the Ninja Run, and it somewhat resembles skiing.

ninja-run-analysis-optimizedEven room-scale VR suffers from the fact that the player is more or less stuck in one place. Moving the player from one spot to another isn’t currently a gracefully solved problem, and many existing methods are not immersive or have other drawbacks. One solution in use is a sort of teleportation, another “slides” the player to another area on command (like gliding across ice). [FultonX] found these existing solutions lacking, and prototyped the Ninja Run concept which he found was surprisingly intuitive and effective. Video demo embedded below.

Continue reading “The Ninja Run: A VR Movement Experiment”

Hacking Google Daydream To Work With IOS

The Google Daydream is a VR headset with a controller, and according to the folks at Google, “It’s not currently compatible with iOS and won’t be for several years probably.” OK.

This inspired [Matteo Pisani] to get to work on the protocol that it uses to speak with Android phones. Cutting to the chase, he got it working in several days.

There really wasn’t all that much to it. The controller sends data over Bluetooth, and [Matteo] noticed an “unknown” device on the network. Looking inside the data that it sent, it changed when he moved the controller. Not so unknown now! The rest of the work consisted of writing applications to test hypotheses, waving the controller around, and finding out if he was right. Read up if you’re interested in implementing this yourself.

We love protocol hacks here. From running quadcopters on your own remotes, to simply trying to turn on a lightbulb, it’s getting more and more important that we understand the various languages that our devices speak.

Revealed: Homebrew Controller Working In Steam VR

[Florian] has been putting a lot of work into VR controllers that can be used without interfering with a regular mouse + keyboard combination, and his most recent work has opened the door to successfully emulating a Vive VR controller in Steam VR. He uses Arduino-based custom hardware on the hand, a Leap Motion controller, and fuses the data in software.

We’ve seen [Florian]’s work before in successfully combining a Leap Motion with additional hardware sensors. The idea is to compensate for the fact that the Leap Motion sensor is not very good at detecting some types of movement, such as tilting a fist towards or away from yourself — a movement similar to aiming a gun up or down. At the same time, an important goal is for any added hardware to leave fingers and hands free.

Continue reading “Revealed: Homebrew Controller Working In Steam VR”

Archaeology, Virtually.

Drone technology is seeing useful application in a new field seemingly every day — so it was only a matter of time before it saw use in archaeology. And so, a team of researches in Australia are combining drone and VR modeling technology to help investigate the Plain of Jars, in Laos.

After the drone images the site, those photos are patched together by object recognition software and are reviewed in the immersive CAVE2 3D facility at Melbourne, Australia’s Monash University. Multiple surveys catalog and archive the dig at various stages and enable the archaeologists to continue investigating the site after leaving — especially useful for digs in dangerous regions. In this case, the landscape around the Plain of Jars is dotted with unexploded cluster bomblets.

Continue reading “Archaeology, Virtually.”