Printed Adapter Teaches An Old Ninja New Tricks

Do you like change for the sake of change? Are you incapable of leaving something in a known and working state, and would rather fiddle endlessly with it? Are you unconcerned about introducing arbitrary compatibility issues into your seemingly straight-forward product line? If you answered “Yes” to any of those questions, have we got the job for you! You can become a product engineer, and spend your days confounding customers who labor under the unrealistic expectation that a product they purchased in the past would still work with seemingly identical accessories offered by the same company a few years down the line. If interested please report to the recruitment office, located in the darkest depths of Hell.

A 2D representation of the adapter in Fusion 360

Until the world is rid of arbitrary limitations in consumer hardware, we’ll keep chronicling the exploits of brave warriors like [Alex Whittemore], who take such matters into their own hands. When he realized that the blades for his newer model Ninja food processor didn’t work on the older motor simply because the spline was a different size, he set out to design and print an adapter to re-unify the Ninja product line.

[Alex] tried taking a picture of the spline and importing that into Fusion 360, but in the end found it was more trouble than it was worth. As is the case with many printed part success stories, he ended up spending some intimate time with a pair of calipers to get the design where he wanted it. Once broken down into its core geometric components (a group of cylinders interconnected with arches), it didn’t take as long as he feared. In the end the adapter may come out a bit tighter than necessary depending on the printer, but that’s nothing a few swift whacks with a rubber mallet can’t fix.

This project is a perfect example of a hack that would be much harder (but not impossible) without having access to a 3D printer. While you could create this spline adapter by other means, we certainly wouldn’t want to. Especially if you’re trying to make more than one of them. Small runs of highly-specialized objects is where 3D printing really shines.


This is an entry in Hackaday’s

Repairs You Can Print contest

The twenty best projects will receive $100 in Tindie credit, and for the best projects by a Student or Organization, we’ve got two brand-new Prusa i3 MK3 printers. With a printer like that, you’ll be breaking stuff around the house just to have an excuse to make replacement parts.

 

Turning Saw Blades Into Throwing Stars

The holidays are nearly upon us, and if you haven’t found the perfect gift for the Mall Ninja in your life yet, this latest hack might be just what you’re looking for. On his YouTube channel, [The Nocturnal Alchemist] demonstrates how to make ninja throwing stars (shuriken) out of an old circular saw blade. One could probably argue that a circular saw itself is close enough to throwing star if your only goal is to wreck some stuff in your backyard, but with this method they’ll have that official samurai look.

To start the process, he hits both sides of the circular saw blade with a grinder to smooth out the surface. He then traces the desired star shapes onto the blade, and cuts the blade into pieces so it’s easier to manage. The rough shape of the stars is cut out with an angle grinder, and a belt sander lets him sharpen the edges.

At this point the stars are effectively finished, but if you want something that’s going to look good on the shelf next to the katana you bought online, you need to do some more finish work. He sands both sides of the stars by hand, starting at 80 grit and working all the way up to 1200 grit wet paper. Once sanded, paste wax is rubbed in with a cloth to give it a protective coating.

With the finish work done, all that’s left to do is throw your new shuriken at cans of soda and watermelons as a demonstration of their power. To this end, he has come prepared with a 1,000 FPS camera; so if you’ve ever wanted to see cans of off-brand soda getting exploded with a throwing star, your Mall Ninja friend isn’t the only one about to get a gift.

With circular saw blade shuriken completed, all you’ll need to do to complete your urban samurai transformation is forge yourself a sword, and perfect your run in virtual reality.

Continue reading “Turning Saw Blades Into Throwing Stars”

The Ninja Run: A VR Movement Experiment

VR is an area that is seeing plenty of DIY experimentation, and [FultonX] has an interesting hack of sorts in that he’s discovered something that meshes well with how we perceive motion and movement. It’s an experimental movement system for VR he calls the Ninja Run, and it somewhat resembles skiing.

ninja-run-analysis-optimizedEven room-scale VR suffers from the fact that the player is more or less stuck in one place. Moving the player from one spot to another isn’t currently a gracefully solved problem, and many existing methods are not immersive or have other drawbacks. One solution in use is a sort of teleportation, another “slides” the player to another area on command (like gliding across ice). [FultonX] found these existing solutions lacking, and prototyped the Ninja Run concept which he found was surprisingly intuitive and effective. Video demo embedded below.

Continue reading “The Ninja Run: A VR Movement Experiment”

Earth Day: Electric Vehicles

Electric vehicles are the wave of the future, whether it’s from sucking too much oil out of the ground, or because of improved battery technology. Most internal combustion engines are unsustainable, and if you’re thinking about the environment – or working on an entry for The Hackaday Prize – an electric vehicle is the way to go.
Here are a few electric vehicle projects that are competing in The Hackaday Prize that show off the possibilities for the electric vehicles of the future.

An Electric Ninja

Motorcycles are extremely efficient already, but if you want a torquey ride with a lot of acceleration, electric is the way to go. [ErikL] is hard at work transforming a 2005 Ninja 250R into an electric vehicle, both to get away from gas-sipping engines and as a really, really cool ride. Interestingly, the battery technology in this bike isn’t that advanced – it’s a lead acid battery, basically, that reduces the complexity of the build.

And They Have Molds To Make Another

Motorcycles aren’t for everybody, but neither are normal, everyday, electronic conversion cars. [MW Motors] is building a car from scratch. The body, the chassis, and the power train are all hand built.

The amazing part of this build is how they created the body. It’s a fiberglass mold that was pulled off of a model carved out of a huge block of foam. There’s a lot of composite work in here, and a lot of work had to happen before digging into the foam; you actually need to choose your accessories, lights, and other bits and bobs before designing the body panels.

While the suspension and a lot of the mechanical parts were taken from a Mazda Miata, the power and drive system are completely custom. Most of the chassis is filled with LiFeMnPO4 batteries, powering four hub motors in each wheel. It’s going to be an amazing car.

Custom, 3D Printed Electric Motors

If you’re designing an electric car, the biggest decision you’re going to make is what motor you’re going to use. This is a simple process: open up a few catalogs and see what manufacturers are offering. There’s another option: building your own motor. [Solenoid] is working on a piece of software that will calculate the specifications of a motor given specific dimensions. It will also generate files for a 3D printed motor given the desired specs. Yes, you’ll still need to wind a few miles of copper onto these parts, but it’s the beginning of completely custom electronic motors.

2010 Ninja Party Badge

Wired took a look at this year’s Ninja Party badges. We were giddy about all the goodies involved in last year’s must-have badge that served as an invitation to the party. It was tailor-made for hacking, including an on-board disassembler. This year’s details are still a bit sparse but the offering is more along the lines of a market-ready product. The badges come in hand held gaming format, with a d-pad and two buttons. They can connect wirelessly with each other and with hidden base stations, allowing participants to fight in the digital realm for LED-indicated achievements. The teaser is tantalizing and we can’t wait to hear details about the real/digital gaming adventure soon to unfold.