We Have A Problem: 3D Printers Are Too Expensive

Hackaday, we have a problem. 3D printing is changing the world but it’s still too expensive to be embraced as a truly transformative technology.

With each passing year, the 3D printing industry grows by leaps and bounds. Food safe PLA is now the norm, with dissolvable and other exotic filaments becoming more mainstream.  New filaments are making it possible to print objects that were not possible before. New CAD software is popping up like dandelions, with each iteration giving novice users a friendly and more intuitive interface to design 3D models. As time marches on, and we look into its future, a vision of the 3D printing world is evident – its only going to get bigger.

3d printerImagine a future where a 3D printer is as common as an ink jet printer in homes all across the world.  A future where you could buy filament from the supermarket down the street, and pick up a new printer from any hardware store. A future where dishwashers, refrigerators and bicycles come with .stl files that allow you to print upgrades or spare parts. A future where companies compete to give the market easy-to-use printers at the cheapest price.

Is this future possible? Not until the technology changes. It’s too expensive, and that’s the problem you’re going to solve. How can you make a 3D printer cheaper? A cheap printer could change the game and make our future a reality.

Where do we need cost savings?

To get you going, here are some parts of common 3D Printers which think need to find cost-saving solutions.

XYZ AND HOT END MOTORS

Stepper motors are going to run you about $15 each. Is it possible to use cheaper DC motors with some type of position tracking while keeping the cost down?

HARDWARE

Threaded rod is probably the cheapest way to move your XYZ axis. What about couplings and guide rods? Check out how this guy made a CNC out of parts from his local hardware store.

ELECTRONICS

No arduino with Easysteppers here – too expensive. We’ve just seen a super cheap controller a few days ago. If we use something other than NEMA steppers, it will radically change the typical electronic controller for our super cheap 3d printer.

EXTRUDER

What is the cheapest way to melt and extrude plastic? What about using thermistors in place of thermocouples? Let’s think out of the box with this, and see if we can get away from the typical stepper motor based extruder. Remember, everything is low cost. If we have to sacrifice some resolution, that is OK.

So there you go. Let’s hear your input on the issue. We need to make 3D printers a lot more affordable and we want to hear any ideas you have on the topic in the comments below. Do you think this is in our future and why?


The 2015 Hackaday Prize is sponsored by:

We Have A Problem: Health Care Where There Are No Health Care Workers

Hackaday, we have a problem. There are a lot of people on this earth and not a lot of health care workers. Let’s use our skills to help alleviate this problem. What can we do to give medical professionals a wider reach, to bridge the distances between hospital and patient, and make it easier for bystanders to administer lifesaving care.

Scope of the Problem

We’d wager that your most recent and vivid remembrance of a health care worker shortage is the Ebola outbreak in West Africa. The shortage of trained professionals and supplies certainly compounded the situation in the countries worst hit. But it didn’t create the problem. Check out this list of doctors per 1,000 people (sorted lowest-to-highest with 2010 numbers). The three countries hit hardest by the outbreak — Guinea, Liberia, and Sierra Leone — register a whopping 0.0 doctors for every 1000 people. Yeah, that’s years before the outbreak.

Keep scrolling down and you’ll see that this isn’t limited to one geographic location. All over the world there are low numbers, with India and Iraq both at 0.6, and interestingly Cuba and Qatar topping the list at 6.7 and 7.7 respectively.

This isn’t a statistics post so let’s pivot. The point is made that we’re a large world population. What kind of engineering solutions can we wield to help provide everyone with the care they need? Leave your comments below but also considered entering the Hackaday Prize with them. Write down your idea as a Hackaday.io project and tag it 2015 Hackaday Prize.

Proof That We Can Do This

firstmedic-510-aedIt’s safe to say we’ve all seen engineering solve part of this problem already. Over the last decade, Automatic External Defibrillators have become ubiquitous. The life-saving hardware is designed to be used by non-doctors to save someone whose heart rhythms have become irregular. [Chris Nefcy] helped develop AEDs and one ended up saving his life. If that’s not proof that we can change the world with our builds we don’t know what is.

Pull on that thinking cap and jump into this conversation. What can we build? What problems need to be solved right now? Where should each of us be looking to make a difference in the availability of health care in the absence of the trained professionals?


The 2015 Hackaday Prize is sponsored by:

We Have A Problem: Mass Versus Local Production

Hackaday, we have a problem. We’re trying to engineer a brighter future; a task that calls for a huge mental leap. This week, instead of discussing a concrete problem, let’s gather around the digital campfire to gnaw on a thought exercise. In thinking abstractly I hope we’ll trigger a slew of ideas you can use as your entry in the 2015 Hackaday Prize in which you can win a Trip to Space or hundreds of other prizes.

Shipping Mass Produced vs. Producing Locally

This morning I was reading an interesting story about an email server that couldn’t deliver message to any ISP physically located more than 500 miles away. In that case it turns out that the limiting factor was misconfiguration and the speed of light. But it got me thinking about things we transport in bulk versus things being transported individually. I often think about the transport of finished goods and compare where we are now to the fabrication visions [Neal Stephenson] talked about in his novel The Diamond Age. In that picture of the future, it is common building blocks of matter that are delivered to every home and business and not finished goods. Interesting.

What kind of resources are consumed in local production versus centralized mass production? Is there merit in using technology to change the way we’ve always done some things? Certainly there will not be one answer for everything so let’s talk about a few examples that might be done differently.

Scenario #1: You send a greeting card with your hand-written message to your mother for her Birthday.

handwritten-message-cardThe way things work right now, you go to the store and pick out a card. You write a personal message inside, lick, stamp, and send it through the mail. The thing is, this card is probably already in a store down the street from your mother. What if you could digitize your handwritten message and have it printed on the card and delivered from a local repository? Take it a step further, assuming that these cards are bulk-printed in one central location and distributed widely, does it save any resources to decentralize the production of the cards and make production local so that the finished goods are not being transported more than 500 miles? And for those skeptics saying that you can’t add a check or cash to the card when done this way… yes you can!

Scenario #2: The meal is finished and just as you close the door to the dishwasher you hear a horrible crack as the plastic latch that holds the door closed breaks.

Recycled household appliancesStandard practice is that the part be ordered from a parts supplier (either by you or by a serviceman). These suppliers keep a stock of common parts which are well documented in a huge library of service manuals for the myriad of home appliances out there. But when you get right down to it, it’s just a little plastic bauble. Let’s assume all of these are made in a single factory in huge production runs that supply both the manufacturer and the legacy parts houses. What if instead of this you could have these parts 3D printed by a business within 500 miles of where they are needed. There are industrial-grade 3D printing techniques that produce parts strong enough to act as a replacement. Where do you come down on resource saving between the two methods?

Scenario #∞: It’s your turn to come up with an example.

We want to hear your ideas on local production versus centralized mass production. Don’t be afraid to share half-baked ideas. The entire point of We Have a Problem is to spark civil debate on issue which could lead to world-changing solutions. Help us start the idea mill and jump on to see where it takes us. Don’t forget to carry the inspiration you find into your entry for the Hackaday Prize.


The 2015 Hackaday Prize is sponsored by:

We Have A Problem: Food Supply

Hackaday, we have a problem. Supplying fresh, healthy food to the world’s population is a huge challenge. And if we do nothing, it will only get more difficult. Rising water prices and (eventually) rising fuel prices will make growing and transporting food more costly. Let’s leverage our collective skill and experience to chip away at this problem. We hope this will get you thinking toward your entry for the 2015 Hackaday Prize.

There are big science breakthroughs that have taken us this far. For instance, The Green Revolution developed wheat with stronger stalks to support the weight of higher kernel yields. If you’re equipped to undertake that kind of bio-hacking we’d love to see it. But the majority of us can still work on ideas to make a difference and (heartwarming moment approaching…) feed the world.

As with the shower feedback loop and electricity monitoring installments of We Have a Problem, I’ll start you off with an uber-simple idea. It’s up to you to think further and wider to get at solutions that are worth more exploration.

Can Technology Give Me a Green Thumb?

warm-dirt-greenhouse-controller-e1332183513993We see it all the time around here, people are building projects to monitor and control their own gardening projects. The one shown here couldn’t be simpler, it’s a hot-box which lets your gardening continue through the winter. It uses heat tape to keep the soil warm, and features a motorized lid which actuates to regulate humidity and temperature.

This concept is a good one. It doesn’t take up a lot of space and it tackles the easy part of automation (how hot is it? how wet is it?). But does it have the potential to make an impact on the source of your household’s food? Maybe the concept needs to be applied to community garden areas so that you can achieve a larger yield.

Robots

robot-weed-pickerPerhaps robots are an answer to a different problem. This little bot, already entered in the 2015 Hackaday Prize, is an experiment with automatic weed elimination versus the use of herbicides.

But it does get us thinking. One of the problems you need to overcome when trying to achieve wide adoption of local food supply is that not everyone enjoys the work that goes into it. Do you have an idea of how your mad robot skills can do the work for us?

buckybotStepping back onto the side-track of changes to industrial farming, let’s take a look at one of the way-out-there-ideas from last year. A huge amount of water usage is in food production. What if we turned entire farms into greenhouses in order to capture and reuse water that is normally lost into an all-to-dry atmosphere? Domes my friends, domes. A swarm of 3D printing robots given locomotion and unleashed to print out translucent covers over the fields on the kilometer-scale. Hey, doesn’t hurt to dream (and do some back of the envelope calculations to gauge how wild that idea actually is).

Your Turn

That should be enough to get the conversation started. Toss around some ideas here in the comments, but don’t let the brainstorm stop there. All it takes to enter the Hackaday Prize is an idea. Write it down as a project on Hackaday.io and tag it “2015HackadayPrize” to get your entry started.


The 2015 Hackaday Prize is sponsored by:

We Have A Problem: Household Electrical

Hackaday, we have a problem. The electricity in your house is on. It’s always on. How fast are those kilowatt-hours ticking by and what is causing it? For most people the only measurement they have of this is the meter itself (which nobody looks at), and the electric bill (which few people actually analyze). Is it silly that people pay far more attention to the battery usage on their phone than the electricity consumption in their abode? I think it is, and so appears another great seed idea for Hackaday Prize entries.

A Better Way to Measure

breaker-panelThe tough part of the problem here is getting at reliable data. Just yesterday we saw an incredible resource monitoring project that uses an optical sensor to measure the turning or the wheel in an electric meter. We’ve seen similar projects for meters that have a blinking LED, and a few other methods. But in many cases the electrical meter is outdoors which makes cheap, easily installed sensors a difficult goal to achieve. Even if we did, this still provides just one stream of data, the entire house.

Alternatively you could tap into the breaker box. We’ve seen [Bill Porter] do just that and there are some commercially available kits that include an octopus of clamp-style current sensors. This is a bit of an improvement, but still requires the user to open the electrical panel (don’t scoff at that statement, you know most people shouldn’t be doing that) to install them. I’m sure there are other methods that I’m missing and would love to hear about them in the comments below.

The Point

To sum up what I’m getting at here, think about the Kill-A-Watt which proved to be a very interesting hack. People liked not just seeing how much power something uses but extending where that data can be accessed. We don’t remember seeing any successful efforts to move the concept ahead a few generations. But if someone can crack that nut it could yield a wave of energy savings as people are able to be better connected with what is using a lot of electricity in their homes.

Your Turn (and Lessons from Last Week)

As with last week, now it’s your turn to come up with some ideas… wild, fantastic, good, bad, outlandish, let’s hear them. Better yet, document your idea on Hackaday.io and tag it with “2015HackadayPrize“. You can win prizes just for a well presented idea!

Speaking of last week, I shared the idea of adding some feedback to how long you’ve been in the shower. There were many opinions about the value and worthiness of that idea so I thought I’d close by covering some of them. Yes, there are much bigger wastes of water (and electricity in this case) in the world but why limit our solutions to only the largest offenders? The low-hanging fruit tends to be stuff a lot of people can understand and relate to. If we only talked about large-scale fixes (I dunno; reducing mercury emissions from power plants?) there is little momentum to crank-start a movement. If you found yourself thinking the ideas from this week and last are far too simple to win The Hackaday Prize that means you better get your project going. The world is hacked together by those who show up.

I’d love to hear suggestions for future installments of We have a problem. Leave those ideas in the comments and we’ll see you here next week!


The 2015 Hackaday Prize is sponsored by:

We Have A Problem: Shower Feedback Loop

Hackaday, we have a problem. Clean water is precious and we want to come up with some ideas to help conserve it. Today’s topic is water wasted while showering. Let’s kick around some ideas and prompt some new builds for The Hackaday Prize.

We’ve all done it; your mind wanders and before you know it you’ve been standing in the shower for far too long. How much water have you wasted? Who know’s, there’s no feedback loop in the shower. But we think adding a little bit of feedback is a fantastic avenue to help combat wasteful habits.

Color Changing Showerheads

shower-feedback-color-idea

What if the showerhead changed colors based on how much water had flowed through it? We’ve already seen consumer showerheads that have the LEDs inside of them, and flow meters are readily available. Start your shower off in the green, as you lather up the suds it moves through blue, purple, orange, red, and finally to flashing red. It doesn’t have to be annoying, but just enough to help quantify how much is pouring down the drain.

Shower Beats

We were big fans of the game SSX Tricky back in the day. The better you were at tricks, the better the music was. If you crashed hard, you’d be listening to nothing more than hi-hat and subdued bass. Apply this to shower time. What if that flow meter you installed on your shower head was connected to a shower radio? Start it off with the best music in the world and progress to the lamest as you run the reservoir dry (ymmv on these selections of course).

Now You Try

If you shave off 5 seconds from your shower it will have a tiny impact in your household. But imagine the aggregate of every household in the world doing so.

This is part of what the 2015 Hackaday Prize is all about. Get the idea machine rolling. Tell us your riff on the shower feedback loop in the comments below. Put up a new project on Hackaday.io, write down an idea, and tag it “2015HackadayPrize”. We’re on the lookout for the best seed ideas and will be giving away shirts and stickers to the ones that show real promise. We’ll be featuring some of these in future installments of “Hackaday, We Have Problem” and if we choose yours it’ll land you with some swag of your own.


The 2015 Hackaday Prize is sponsored by: