A closeup of the ring, inner electronics including a lit green LED seen through the inner transparent epoxy, next to the official app used to light up the LED for a demo.

New Part Day: A Hackable Smart Ring

We’ve seen prolific firmware hacker [Aaron Christophel] tackle smart devices of all sorts, and he never fails to deliver. This time, he’s exploring a device that seems like it could have come from the pages of a Cyberpunk RPG manual — a shiny chrome Bluetooth Low Energy (BLE) smart ring that’s packed with sensors, is reasonably hacker friendly, and is currently selling for as little as $20.

The ring’s structure is simple — the outside is polished anodized metal, with the electronics and battery carefully laid out along the inside surface, complete with a magnetic charging port. It has a BLE-enabled MCU, a heartrate sensor, and an accelerometer. It’s not much, but you can do a lot with it, from the usual exercise and sleep tracking, to a tap-sensitive interface for anything you want to control from the palm of your hand. In the video’s comments, someone noted how a custom firmware for the ring could be used to detect seizures; a perfect example of how hacking such gadgets can bring someone a brighter future.

The ring manufacturer’s website provides firmware update images, and it turns out, you can upload your own firmware onto it over-the-air through BLE. There’s no signing, no encryption — this is a dream device for your purposes. Even better, the MCU is somewhat well-known. There’s an SDK, for a start, and a datasheet which describes all you would want to know, save for perhaps the tastiest features. It’s got 200 K of RAM, 512 K of flash, BLE library already in ROM, this ring gives you a lot to wield for how little space it all takes up. You can even get access to the chip’s Serial Wire Debug (SWD) pads, though you’ve got to scrape away some epoxy first.

As we’ve seen in the past, once [Aaron] starts hacking on these sort of devices, their popularity tends to skyrocket. We’d recommend ordering a couple now before sellers get wise and start raising prices. While we’ve seen hackers build their own smart rings before, it’s tricky business, and the end results usually have very limited capability. The potential for creating our own firmware for such an affordable and capable device is very exciting — watch this space!

Continue reading “New Part Day: A Hackable Smart Ring”

A milled PCB next to a woman wearing a dress that includes it

Elegant Evening Dress Sports Servo-Actuated Flowers

There’s been plenty of research into “smart fabrics”, and we’ve seen several projects involving items of clothing with electronics integrated inside. These typically include sensors and simple actuators like LEDS, but there’s no reason you can’t integrate moving electromechanical systems as well. [Rehana Al-Soltane] did just that: she made an elegant evening dress with flowers that open and close on command.

It took [Rehana] a bit of experimentation to figure out a floral design that opens and closes smoothly without crumpling the fabric or requiring excessive force to actuate. She finally settled on a plastic sheet sandwiched between two layers of fabric, with pieces of fishing line attached that pull the edges inward. The lines are guided through a tube down the back of the dress, where a servo pulls or releases them.

The mechanical flower can be operated by touch — [Rehana] made one of the other flowers conductive by embedding copper tape between its petals and connected it to the capacitive touch sensor interface of an Atmel microcontroller. The micro is sitting on a custom PCB that’s worn on the hip, with wires going to the servo at the back. You can see how the system operates in the video embedded below.

The dress is [Rehana]’s final project for the famous “How To Make (almost) Anything” course at MIT, and required a wide variety of skills: the cable guide was 3D printed, the flower petals were laser cut, the PCB was milled, and the end product was sewn together. [Rehana] has a knack for making electronics-infused clothes and accessories, including the flexible PCB crown that she’s wearing in the image above. Continue reading “Elegant Evening Dress Sports Servo-Actuated Flowers”

A Tshwatch on a table

TshWatch Helps You Learn More About Yourself

TshWatch is a project by [Ivan / @pikot] that he’s been working on for the past two years. [Ivan] explains that he aims to create a tool meant to help you understand your body’s state. Noticing when you’re stressed, when you haven’t moved for too long, when your body’s temperature is elevated compared to average values – and later, processing patterns in yourself that you might not be consciously aware of. These are far-reaching goals that commercial products only strive towards.

At a glance it might look like a fitness tracker-like watch, but it’s a sensor-packed logging and measurement wearable – with a beautiful E-Ink screen and a nice orange wristband, equipped with the specific features he needs, capturing the data he’d like to have captured and sending it to a server he owns, and teaching him a whole new world of hardware – the lessons that he shares with us. He takes us through the design process over these two years – now on the fifth revision, with first three revisions breadboarded, the fourth getting its own PCBs and E-Ink along with a, and the fifth now in the works, having received some CAD assistance for battery placement planning. At our request, he has shared some pictures of the recent PCBs, too!

Continue reading “TshWatch Helps You Learn More About Yourself”

PCB Mill Turns Out Stylish Necklace

When needing a custom PCB, most of us will whip up design files and send them off to a board house. Prices are low and turnaround times are bearable, with quality that’s difficult to replicate at home. The old methods still have some value however, as [Bantam Tools] demonstrate with this attractive glowing hummingbird necklace.

The back side of the pendant neatly hides a button cell battery and a small SMD switch.

The necklace is made of copper-clad board, the type typically used by those who would etch their own PCBs at home. In this case, the board is placed on a [Bantam Tools] mill, which removes copper strategically and cuts out the final shape. This creates a series of traces on the back for a battery, LEDs and a small swtich, while creating areas on the other side of the board for light to shine through.

With a battery installed, the LEDs on the back side of the necklace glow through the fiberglass for a beautiful effect. With a PCB mill and a reflow oven, it’s remarkably easy to make, too. Of course, if you like your parts density a little higher, these FPGA earrings might be more your speed!

Electronic hub barrette diagram

Hair Is Good Electronic Hub Real Estate

When it comes to wearables, there are a few places you can mount rechargeable batteries and largish circuit boards. Certainly, badges hanging from a lanyard are a favorite here on Hackaday. A belt is another option. [deshipu] has come up with a good location on your head, provided you have long hair that is. That’s the hair clasp or barrette. It can support a hefty mass, be relatively large, and doesn’t touch your skin.

Plusing LEDs barretteHis plan gets even better, namely to use it as a hub for other electronics on your head, giving as examples: mechatronic ears and LEDs on eyelashes, earrings, and neck collars. We’d include some sort of heads-up display on glasses too or perhaps some playful glasses windshield wipers.

Being able to solder the clasp to the circuit board was his first success and he’s since made a test barrette with pulsing LEDs which he’s distributed to others for evaluation. We really like his electronic hub idea and look forward to seeing where he takes it. For now, he’s done enough to have become a finalist in the Hackaday Human Computer Interface Challenge.

ETextile Spring Break Tackles Signal Blocking, Audio Generation, And Radio Transmissions

Finding a killer application for e-textiles is the realm of the hacker and within that realm, anything goes. Whether it’s protecting your digital privacy with signal shielding, generating audio with a wearable BeagleBone or 555 timer, or making your favorite garment into an antenna, the eTextile Spring Break is testing out ways to combine electronics and fabric.

You may be asking yourself “What are e-textiles good for?”. Well, that’s an excellent question and likely the most common one facing the industry today. I’m afraid I won’t be able to give a definitive answer. As an e-textile practitioner, I too am constantly posing this question to myself. There’s an inherently personal nature to fabric worn on the body and to our electronic devices that makes this answer elusive. Instead of trying to fabricate some narrow definition, what I offer is a look at topics of interest, material experimentation, and technical exploration through the lens of a week-long event held recently in New York called eTextile Spring Break.

Continue reading “ETextile Spring Break Tackles Signal Blocking, Audio Generation, And Radio Transmissions”

Bumblebee Breakout, A DIY Wearable Connector

The practice of developing wearable electronics offers a lot of opportunity for new connector designs and techniques for embedding electronics. Questions like these will eventually come up: How will this PCB attach to that conductive fabric circuit reliably? What’s the best way to transition from wire to this woven conductive trim? What’s the best way to integrate this light element into this garment while still maintaining flexibility?

Mika Satomi and Hannah-Perner Wilson of Kobakant are innovators in this arena and inspire many with their prolific documentation while they ask themselves questions similar to these. Their work is always geared towards accessibility and the ability to recreate what they have designed. Their most recent documented connector is one they call the Bumblebee Breakout. It connects an SMD addressable RGB LED, such as Adafruit’s Neopixel, to a piece of side glow fiber optic 1.5mm in diameter. On a short piece of tubing, the four pads of the SMD LED are broken out into four copper rings giving it the look of a striped bumblebee. To keep from shorts occurring while wrapping the copper tape contacts around the tube, they use Kapton tape to isolate each layer as they go.

This connector was originally created to be used in a commission they did out of Koba, their e-textile tailor shop located in Berlin. Fiber optics were applied to jackets for a performance called “All Your Base Are Belong To Us” produced by the Puppetry Department of the Hochschule für Schauspielkunst Ernst Busch.

Peruse more e-textiles techniques and learn how to build a connector transitioning from an embroidered thread bus to a wire and how to knit solderable circuit boards. And make sure to click around Kobakant’s website, it’s full of e-textile DIY tutorials!