3D Printing A Bottle Labeling Assembly Line

We’re not completely sure why [Fraens] needs to label so many glass bottles at home. Perhaps he’s brewing his own beer, or making jams. Whatever the reason is, it was justification enough to build an absolutely incredible labeling machine that you could mistake for a piece of industrial gear…if it wasn’t for the fact that majority of the device is constructed out of orange 3D printed plastic.

As we’ve come to expect, [Fraens] has documented the build with a detailed write-up on his site — but in this case, you’ve really got to watch the video below to truly appreciate how intricate the operation of this machine is. Watching it reminded us of an episode of How It’s Made, with the added bonus that you not only get to see how the machine functions, but how it was built in the first place.

Nearly every part of the machine, outside the fasteners, smooth rods, a couple of acrylic panels, and a few sections of aluminum extrusion, were 3D printed. You might think this would result in a wobbly machine with sloppy tolerances, but [Fraens] is truly a master of knowing when and where you can get away with using printed parts. So for example, while the glue rollers could be done in printed plastic, they still needed metal rods run through the middle for strength and proper bearings to rotate on.

Looking at the totality of this build, it’s hard to imagine how it could have been accomplished via traditional methods. Sure you could have sourced the rollers and gears from a supplier to save some plastic (at an added expense, no doubt), but there’s so many unique components that simply needed to be fabricated. For example, all the guides that keep the label heading in the right direction through the mechanism, or the interchangeable collars which let you select the pattern of glue which is to be applied. Maybe if you had a whole machine shop at your disposal, but that’s a lot more expensive and complex a proposition than the pair of desktop 3D printers [Fraens] used to crank out this masterpiece.

If the name (and penchant for orange plastic) seems familiar, it’s because we’ve featured several builds from [Fraens] in the past. This one may be the most technically impressive so far, but that doesn’t diminish the brilliance of his vibratory rock tumbler or cigarette stuffing machine.

Continue reading “3D Printing A Bottle Labeling Assembly Line”

SIPing A Vintage Phone

Something that’s a bit of fun at hacker camps such as the recent EMF Camp is to bring along a wired phone and hook it up to the on-camp copper network. It’s a number on the camp network, but pleasingly retro. How about doing the same thing at home? Easy enough if you still have a wired landline, but those are now fast becoming a rarity. Help is at hand though courtesy of [Remy], who’s written about his experiences using a 1960s Dutch phone as a SIP device.

The T65 was the standard Dutch home phone of the 1960s and 1970s, and its curvy grey plastic shape is still not difficult to find in that country.  The guide covers using various different VoIP boxes between such an old machine and the Internet, but there’s more of interest to be found in it. In particular the use of an inline pulse-to-tone converter, either the wonderfully-named DialGizmo, or perhaps closer to our world, a PIC-based kit.

So if you can lay your hands on a VoIP box it’s completely possible to use an aged phone here in 2024. Remember though, a SIP account isn’t the only way to do it.

J. de Kat Angelino, CC BY 3.0.

Hackaday Links Column Banner

Hackaday Links: June 16, 2024

Attention, slackers — if you do remote work for a financial institution, using a mouse jiggler might not be the best career move. That’s what a dozen people learned this week as they became former employees of Wells Fargo after allegedly being caught “simulating keyboard activity” while working remotely. Having now spent more than twice as many years working either hybrid or fully remote, we get it; sometimes, you’ve just got to step away from the keyboard for a bit. But we’ve never once felt the need to create the “impression of active work” during those absences. Perhaps that’s because we’ve never worked in a regulated environment like financial services.

For our part, we’re curious as to how the bank detected the use of a jiggler. The linked article mentions that regulators recently tightened rules that require employers to treat an employee’s home as a “non-branch location” subject to periodic inspection. More than enough reason to quit, in our opinion, but perhaps they sent someone snooping? More likely, the activity simulators were discovered by technical means. The article contains a helpful tip to avoid powering a jiggler from the computer’s USB, which implies detecting the device over the port. Our guess is that Wells tracks mouse and keyboard activity and compares it against a machine-learning model to look for signs of slacking.

Continue reading “Hackaday Links: June 16, 2024”

A closeup of the ring, inner electronics including a lit green LED seen through the inner transparent epoxy, next to the official app used to light up the LED for a demo.

New Part Day: A Hackable Smart Ring

We’ve seen prolific firmware hacker [Aaron Christophel] tackle smart devices of all sorts, and he never fails to deliver. This time, he’s exploring a device that seems like it could have come from the pages of a Cyberpunk RPG manual — a shiny chrome Bluetooth Low Energy (BLE) smart ring that’s packed with sensors, is reasonably hacker friendly, and is currently selling for as little as $20.

The ring’s structure is simple — the outside is polished anodized metal, with the electronics and battery carefully laid out along the inside surface, complete with a magnetic charging port. It has a BLE-enabled MCU, a heartrate sensor, and an accelerometer. It’s not much, but you can do a lot with it, from the usual exercise and sleep tracking, to a tap-sensitive interface for anything you want to control from the palm of your hand. In the video’s comments, someone noted how a custom firmware for the ring could be used to detect seizures; a perfect example of how hacking such gadgets can bring someone a brighter future.

The ring manufacturer’s website provides firmware update images, and it turns out, you can upload your own firmware onto it over-the-air through BLE. There’s no signing, no encryption — this is a dream device for your purposes. Even better, the MCU is somewhat well-known. There’s an SDK, for a start, and a datasheet which describes all you would want to know, save for perhaps the tastiest features. It’s got 200 K of RAM, 512 K of flash, BLE library already in ROM, this ring gives you a lot to wield for how little space it all takes up. You can even get access to the chip’s Serial Wire Debug (SWD) pads, though you’ve got to scrape away some epoxy first.

As we’ve seen in the past, once [Aaron] starts hacking on these sort of devices, their popularity tends to skyrocket. We’d recommend ordering a couple now before sellers get wise and start raising prices. While we’ve seen hackers build their own smart rings before, it’s tricky business, and the end results usually have very limited capability. The potential for creating our own firmware for such an affordable and capable device is very exciting — watch this space!

Continue reading “New Part Day: A Hackable Smart Ring”

RC Batwing Actually Flies

Batman is a compelling superhero for enough reasons that he’s been a cultural force for the better part of a century. His story has complex characters, interesting explorations of morality, iconic villains, and of course a human superhero who gets his powers from ingenuity instead of a fantastical magical force. There are a number features of the Batman universe that don’t translate well to the real world, though, such as a costume that would likely be a hindrance in fights, technology that violates the laws of physics, and a billionaire that cares about regular people, but surprisingly enough his legendary Batwing jet airplane actually seems like it might be able to fly.

While this is admittedly a model plane, it flies surprisingly well for its nontraditional shape. [hotlapkyle] crafted it using mostly 3D printed parts, and although it took a few tries to get it working to his standards, now shoots through the air quite well. It uses an internal electric ducted fan (EDF) to get a high amount of thrust, and has elevons for control. There are two small vertical stabilizer fins which not only complete the look, but allow the Batwing to take to the skies without the need for a flight controller.

Not only is the build process documented in the video linked below with some interesting tips about building RC aircraft in general, but the STL files for this specific build are available for anyone wanting to duplicate the build or expand on it. There are plenty of other interesting 3D-printed models on [hotlapkyle]’s page as well that push the envelope of model aircraft. For some other niche RC aircraft designs we’ve seen in the past be sure to check out this F-35 model that can hover or this tilt-rotor Osprey proof-of-concept.

Continue reading “RC Batwing Actually Flies”

ESP32 Powers Single-PCB ZX Spectrum Emulator

When word first got out that the Chinese board houses were experimenting with full color silkscreens, many in our community thought it would be a boon for PCB art. Others believed it would be akin to cheating by removing the inherent limitations of the medium. That’s not a debate that will be solved today, but here we have an example of a project that’s not only making practical application of the technology, but one that arguably couldn’t exist in its current form without it: a single-PCB ZX Spectrum emulator developed by [atomic14].

There basics here are, well, they’re pretty basic. You’ve got an ESP32-S3, a TFT display, a micro SD slot, and the handful of passives necessary to tie them all together. What makes this project stand out is the keyboard, which has been integrated directly into the PCB thanks to the fourteen pins on the ESP32-S3 that can be used as touch sensor input channels. There are issues with detecting simultaneous keypresses, but overall it seems to work pretty well.

Continue reading “ESP32 Powers Single-PCB ZX Spectrum Emulator”

The 3D-printed adapter shown assembled, with the USB cable's wires going into cable channels on the adapter and magnets slotted into the adapter's openings

Use Your Thinkpad X1 Tablet’s Keyboard Standalone

Some hacks are implemented well enough that they can imitate involved and bespoke parts with barely any tools. [CodeName X]’s Thinkpad X1 Tablet Keyboard to USB adapter is one such hack – it let’s one reuse, with nothing more than a 3D printed part and a spare USB cable, a keyboard intended for the Thinkpad X1 Tablet (2016 or 2017).

The issue is, this keyboard connects through pogo pins and holds onto the tablet by magnets, so naturally, you’d expect reusing it to involve a custom PCB. Do not fret – our hacker’s take on this only needs aluminum foil and two small circular magnets, pressing the foil into the pins with the help of the printed part, having the USB cable pins make contact with the foil pads thanks to nicely laid out wire channels in the adapter. If you want to learn more, just watch the video embedded below.

Of course, this kind of adapter will apply to other similar keyboards too — there’s no shortage of tablets from last decade that had snap-on magnetic keyboards. But watch out; some will need 3.3V, and quite a few of them will use I2C-HID, which would require a MCU-equipped adapter like this wonderful Wacom rebuild did. Not to worry, as we’ve shown you the ropes of I2C-HID hacking.

Continue reading “Use Your Thinkpad X1 Tablet’s Keyboard Standalone”