Developed on Hackaday: Current Status and Selected Beta Testers

Mooltipass final prototype

The Hackaday community is currently working on an offline password keeper, aka Mooltipass. The concept behind this product is to minimize the number of ways your passwords can be compromised, while generating and storing long and complex random passwords for the different websites you use daily. The Mooltipass is a standalone device connected through USB and is compatible with all major operating systems on PCs, Macs and Smartphones. More details on the encryption and technical details can be found on our github repository readme or by having look at all the articles we previously published on Hackaday.

As you can see from our commit activity these last weeks have been extremely busy for us. We finally have a firmware that uses all the different libraries that our contributors made but also a chrome plugin and extension that can communicate with our Mooltipass. We’re very happy to say that our system is completely driverless. A video will be published on Hackaday next week showing our current prototype in action as some of the contributors are already using it to store their credentials.

We selected 20 beta testers that will be in charge of providing us with valuable feedback during the final stages of firmware / plugin development. Selection was made based on how many passwords they currently have, which OS they were using but also if they were willing to contribute to the prototype production cost. We expect them to receive their prototypes in less than 2 months as the production funds were wired today.

We think we’ve come a long way since the project was announced last december on Hackaday, thanks to you dear readers. You provided us with valuable feedback and in some cases important github push requests. You’ve been there to make sure that we were designing something that could please most of the (non) tech-savy people out there and we thank you for it. So stay tuned as in a week we will be publishing a video of our first prototype in action!

Want to chat with us? You can join the official Mooltipass Google Group or follow us on Hackaday Projects.

Using Echoes of Light to Turn Walls into Mirrors

using a wall as a mirror

 

[Matthias] recently published a paper he worked on, in which he details how his group managed to reconstruct a hidden scene using a wall as a mirror in a reasonably priced manner. A modified time-of-flight camera (PMD CamBoard Nano) was used to precisely know when short bursts of light were coming back to its sensor. In the picture shown above the blue represents the camera’s field of view. The green box is the 1.5m*1.5m*2.0m scene of interest and we’re quite sure you already know that the source of illumination, a laser, is shown in red.

As you can guess, the main challenge in this experience was to figure out where the three-times reflected light hitting camera was coming from. As the laser needed to be synchronized with the camera’s exposure cycle it is very interesting to note that part of the challenge was to crack the latter open to sniff the correct signals. Illumination conditions have limited impact on their achieved tolerance of +-15cm.

Designing the Second Version of my Business Card

At the end of the month my contract with my current employer (no, not Hackaday) will end. With the interviews starting to line up I therefore thought it’d be a nice opportunity to design the PCB business card you can see in the picture above.

It is made of two PCBs soldered together, the bottom one containing the SMD components while the top one only has holes to let most of them pass through. The design was mainly inspired by the first version we already featured on Hackaday although the microcontroller was changed for the (costly) ATMega32u4 and the top PCB was slightly milled so the LEDs may shine through the FR4. The LEDs are connected in groups of 2 (total of 8 groups) to PWM channels and a hidden flash memory allows the card to be recognized as an external 2MB storage using the LUFA library. All source files may be downloaded on my website.

Measuring Car Engine RPM via the Cigarette Lighter

delorean

Sometimes we forget how many things we can do with a simple oscilloscope. In this video [Ben] uses one that Tektronix lent him to measure his DeLorean engine RPM. By checking the car main ~12V voltage one may notice that the voltage spikes occurring are directly related to the engine speed, as they are created by the inductive kicks from the ignition coils. Obviously the multiplication you have to do to get the RPMs from the number of spikes per second depends on your engine configuration (flat 4, v6…).

The method that [Ben] used was to search for high amplitude spikes on the (AC coupled) car 12V Fast Fourier Transform (FFT) to get a reliable measurement given the many electrical noise sources present in his car. At the end of his video, he however mentioned that it could still be possible to get a good measurement with a simple voltage comparator and a high enough voltage reference.

[Read more...]

Developed on Hackaday: We Have Final Prototypes!

Mooltipass final prototype

The last few weeks have been quite tense for the Mooltipass team as we were impatiently waiting for our smart cards, cases and front panels to come back from production. Today we received a package from China, so we knew it was the hour of truth. Follow us after the break if you have a good internet connection and want to see more pictures of the final product

[Read more...]

Building a CNC Milling Machine for less than $1300

CNC milling machine

[Mynasru] tipped us about a homemade CNC milling machine that his friend [trochilidesign] recently made. We have to admit it may be one of the best ones we’ve featured so far on Hackaday, mainly due to its elegant design (see picture above) and its all metal structure with linear guide rails. In the very well detailed write-up, we can gather that the CNC machine was designed using SolidWorks.

The main frame is built around 2 Maytec 40x80mm profiles and 2 endplates made from 10mm thick aluminum. 3 Nema 23 stepper motors and their drivers power the build, all of them bought on ebay. Finally, the Mach3 CNC software was chosen to interpret the G code and send the appropriate control signals.

Due to licensing restrictions the original author can only provide us with PDF files detailing each part of the machine, but we’re sure this should already be enough for interested persons out there.

Developed on Hackaday: Front Panels and Beta Testers Program

mooltipass front panel

We’re pretty sure that most of our readers already know it by now, but we’ll tell you anyway: the Hackaday community (writers and readers) is currently developing an offline password keeper, the Mooltipass. As it has been more than two weeks since we wrote an article about our progress, today’s will be about the Mooltipass front panels and our beta testers program.

At the end of our mechanical design rundown article we showed that we were originally planning to put a slightly tinted acrylic panel on top of our device. We however could still make out the Mooltipass’ insides, which wasn’t in line with the nice professional look we wanted. We then designed another front panel, one which was transparent above the OLED screen/LEDs and opaque (black) on top of the rest. To our surprise the result still wasn’t as good as we had hoped, as the contrast between the front panel and the screens/LEDs was too big. We finally came up with the panel shown above (see GitHub repository folder) which combines the two techniques previously described. As it is still in China, we’ll show you the final result when we get it in our hands.

We launched around 10 case prototypes in production, they will soon be shipped to our current contributors/advisers together with the smart cards chosen by Hackaday readers. In the meantime we sent our official call for beta testers to our mailing list recipients and hackaday.io followers, in which we asked them to fill a small form that will allow us to know them a bit better. We asked about their home/work computer setup, their level of expertise, their willingness to contribute to the prototype cost and finally specifics about who would use the Mooltipass they’d receive. We are targeting a broad range of users but also testers that will provide us with detailed feedback and clear bug reports.

We also spent quite a while searching for cheaper alternate parts that could be sourced in relatively big quantities. This is usually an overlooked aspect of a project so we preferred to tackle this as soon as possible. In a few weeks the contributors and I will receive all the components required to assemble our final prototype (front panels / case / top & bottom PCBs / smart cards) and it will be time to write a new update. Want to stay informed? You can join the official Mooltipass Google Group or follow us on Hackaday Projects.

Follow

Get every new post delivered to your Inbox.

Join 91,297 other followers