Alarm Notifies the Office When the Coffee is Ready

[Stian] thought it would be nice if his coworkers could be electronically notified when the latest batch of coffee is ready. He ended up building an inexpensive coffee alarm system to do exactly that. When the coffee is done, the brewer can press a giant button to notify the rest of the office that it’s time for a cuppa joe.

[Stian’s] first project requirement was to activate the system using a big physical button. He chose a button from Sparkfun, although he ended up modifying it to better suit his needs. The original button came with a single LED built-in. This wasn’t enough for [Stian], so he added two more LEDs. All three LEDs are driven by a ULN2003A NPN transistor array. Now he can flash them in sequence to make a simple animation.

This momentary push button supplies power to a ESP8266 microcontroller using a soft latch power switch. When the momentary switch is pressed, it supplies power to the latch. The latch then powers up the main circuit and continues supplying power even when the push button is released. The reason for this power trickery is to conserve power from the 18650 li-on battery.

The core functionality of the alarm uses a combination of physical hardware and two cloud-based services. The ESP8266 was chosen because it includes a built-in WiFi chip and it only costs five dollars. The microcontroller is configured to connect to the WiFi network with the push of a button. The device also monitors the giant alarm button.

When the button is pressed, it sends an HTTP request to a custom clojure app running on a cloud service called Heroku. The clojure app then stores brewing information in a database and sends a notification to the Slack cloud service. Slack is a sort of project management app that allows multiple users to work on projects and communicate easier over the internet. [Stian] has tapped into it in order to send the actual text notification to his coworkers to let them know that the coffee is ready. Be sure to watch the demo video below. Continue reading “Alarm Notifies the Office When the Coffee is Ready”

Lighting The Great Indoors With A Solar Security Light

Look at any list of things to do to make your house less attractive to the criminal element and you’ll likely find “add motion sensing lights” among the pro tips. But what if you don’t want to light up the night? What if you want to use a motion sensor to provide a little light for navigating inside a dark garage? And what if the fixture you’ve chosen is a solar fixture that won’t quite cooperate? If you’re like [r1ckatkinson], you do a teardown and hack the fixture to do your bidding.

[r1ckatkinson]’s fixture was an inexpensive Maplin solar unit with PIR motion sensing, with the solar panel able to be mounted remotely. This was perfect for the application, since the panel could go outside to power the unit, with the lamp and PIR sensor inside. Unfortunately, the solar cell is also the photosensor that tells the unit not to turn on during the day. Armed with scratch pad and pencil, [r1ckatkinson] traced the circuit and located the offending part – a pull-down resistor. A simple resistor-ectomy later and he’s got a solar-powered light working just the way he likes it.

A simple hack, but effective. Seeing off-the-shelf gear modified is always a treat. Of course there’s something to be said for the more home-brew approach to security lighting, too.

How to Make Amazon Echo Control Fake WeMo Devices

[Chris] has been playing with the Amazon Echo. It’s sort of like having Siri or Google Now available as part of your home, but with built-in support for certain other home automation appliances like those from Belkin WeMo and Philips. The problem was [Chris] didn’t want to be limited to only those brands. He had other home automation gear that he felt should work with Amazon Echo, but didn’t. That’s when he came up with the clever idea to just emulate one of the supported platforms.

The WeMo devices use UPnP to perform certain functions over the network. [Chris] wanted to see how these communications actually worked, so he fired up his laptop and put his WiFi adapter into monitor mode. Then he used Wireshark to start collecting packets. He found that the device detection function starts out with the Echo searching for WeMo devices using UPnP. The device then responds to the Echo with the device’s URL using HTTP over UDP. The Echo then requests the device’s description using that HTTP URL. The description is then returned as an HTTP response.

The actual “on/off” functionality of the WeMo devices is simpler since the Echo already knows about the device. The Echo simply connects to the WeMo over the HTTP interface and issues a “SetBinaryState” command. The WeMo then obliges and returns a confirmation via HTTP.

WeMo Echo
How Echo Communicates with WeMo Devices

[Steve] was able to use this information to set up his own WeMo “virtual cloud”. Each virtual device would have its own IP address. They would also need to have a listener for UDP broadcasts as well as an HTTP listener running on the WeMo port 49153. Each virtual device would also need to be able to respond to the UPnP discovery requests and the “on/off” commands.

[Chris] used a Linux server, creating a new virtual Ethernet interface for each virtual WeMo switch. A single Python script runs the WeMo emulation, listening for the UPnP broadcast and sending a different response for each virtual device. Part of the response includes the device’s “friendly name”, which is what the Echo listens for when the user says voice commands. Since the virtual WeMo devices are free, this allows [Chris] to make multiple phrases for each device. So rather than be limited to “television”, he can also make a separate device for “TV” that performs the same function. [Chris] is also no longer limited to only specific brands of home automation gear.

There’s still a long way to go in hacking this device. There’s a lot of hardware under the hood to work with. Has anyone else gotten their hands (and bench tools) on one of these?

Non-Invasive Smart Electricity Meter

There are a lot of ways to measure energy usage in the home, but most of them involve handling mains voltage. Not only that, but sometimes they require handling mains voltage before it gets through a breaker panel or fuse box, meaning that if you make a mistake there are a lot of bad things that can happen. [Yonas] has been working on this problem, and has come up with a non-invasive, safer way to monitor electricity consumption without having to work directly on live wires.

Please note that you should still not be working on mains voltage without proper training, but if you have the required know-how then the installation should be pretty straightforward. The project is based on the Spark Core, and uses clamp-on current sensors to measure energy use. The sensors wrap around the mains cable, meaning you don’t have to disconnect anything to hook them up. The backend runs on a LAMP server which could be a Raspberry Pi if you have one. [Yonas] runs it on a hosted server as a matter of preference.

All of the source code for this is available, and assuming you can get your hands on the current sensors this could be a great way to get started monitoring your energy usage in the house. Be sure to check out the video below for a demonstration of the operation of this device. Of course, if you have a gas line you’ll need this energy monitoring setup too.

Continue reading “Non-Invasive Smart Electricity Meter”

Natural Materials For Nature’s Call

When it comes to picking out high-end fixtures and appointments for your bathroom remodel, there are tons of choices out there these days. Sure, that double-slipper tub or  $2500 stainless steel toilet can make a statement, and even the local Big Box Home Store has some pretty unique stuff. But for a one of a kind sink, follow [The Samurai Carpenter]’s lead and carve a sink out of a boulder.

Capture2Starting with a stone he found off the porch of his house, [Samurai Carpenter] was able to rough out the shape of the basin with a diamond-bladed cutoff saw. A few plunge cuts within a hand-sketched outline gave him the room needed to hog out most of the material with a cold chisel and hammer. A diamond wheel on an angle grinder, along with a chisel bit on an impact drill, got him down to the final smooth finish. After the break there’s a video showing the final installation, including drilling out the drain hole and mounting the sink to the vanity, which is a beautiful rough-cut slab of what appears to be locally sourced wood. The whole installation looks fantastic and appears to function well; our only quibble is there’s no overflow in the basin, but it’s hard to see how he could have provided one without significantly complicating the project and potentially ruining the aesthetic.

Although they may not fit in with the natural vibe of his remodel, either this or this tricked out mirror could complete a high-end  bathroom remodel.

Continue reading “Natural Materials For Nature’s Call”

Why Build Furniture When you can Grow it?

[Gavin Munro] is turning the standard paradigm of furniture making on its head. Instead of harvesting trees and slicing them up into boards – or worse, turning them into sawdust to be used for particle board – [Gavin] is literally growing furniture.

Supple young willow saplings are pruned and trained using wire and plastic form work. The trees are encouraged to grow in the right directions to form legs, arms, seat and back, and eventually the individual pieces are grafted Fg_3_chairs_growingtogether to continue growing into one solid piece. When the chair is mature, the leaves are removed, the chair is cut free from the ground, and with a little seasoning and finishing, you’ve got a unique and functional chair. And what’s more, since it’s a solid piece of wood, there are no joints to loosen over time.

You’ve got to admire the dedication that goes into these chairs. The current crop is about nine years old and still a few years from harvest. There’s a lot to be learned from the organization of a project like this – planning a production line where the first finished pieces are a decade or more from the showroom is no mean feat. Looks like [Gavin] has thought that through as well, by starting a line of lamps that will be turning a profit sooner. The video after the break demonstrates not only [Gavin’s] chairs and lamps, but also features his first harvest of tables.

Continue reading “Why Build Furniture When you can Grow it?”

Hope it’s real: 3D Printing Houses with Bricks

You’ve just got to go with the hype on this one, because it’s obviously not ready for prime time yet. But a few days ago murmurs started circling the net that an Australian inventor had developed a robot capable of building complicated structure from brick all by itself.

bricklaying-robotBefore you go off your rocker… we’re definitely not calling this real. It’s a proof of concept at best, but that doesn’t prevent us from getting excited. How long have you been waiting for robots that can build entire structures on our behalf? We were excited at the prospect of extruding walls of concrete. But this is more like LEGO buildings in the real world. The beast cuts brick to length, conveys each brick along the telescoping arm, and butters them as it lays them in place. At least that’s what the rendered video after the break shows.

We’re hearing about this now because FastBrick Robotics, the company [Mark Pivac] founded and has spent ten years developing the Hadrian project at, was just sold to a company called DMY Capital Limited. Of course they’re going to want to get some press out of the sale.

There is an image of the brick feeder on an existing excavator that frankly looks photoshopped. And some real images like the one seen here and another of the “print head” holding some bricks. But it’s enough to think there’s potential here.

The idea is that the base of the robot is fixed with the arm long enough to reach any part of the structure being built. Precise positioning is achieved by a fixed marker in a different position from the robot. The head triangulates its position using laser range-finding with the marker (having said that we now assume there needs to be more than one marker).

So what do you think? Are we ever going to see this incredibly complicated bucket of awesome producing structures in our neighborhood which the Big Bad Wolf simply cannot blow down?

Continue reading “Hope it’s real: 3D Printing Houses with Bricks”