Playing Doom (Poorly) on a VoCore

doomguy Last May brought the unastonishing news that companies were taking the Systems on Chip found in $20 wireless routers and making dev boards out of them. The first of these is the VoCore, an Indiegogo campaign for a 360MHz CPU with 8MB of Flash and 32MB or RAM packaged in a square inch PCB for the Internet of Things. Now that the Indiegogo rewards are heading out to workbenches the world over, it was only a matter of time before someone got Doom to run on one of them.

After fixing some design flaws in the first run of VoCores, [Pyrofer] did the usual things you would do with a tiny system running Linux – webcams for streaming video, USB sound cards to play internet radio, and the normal stuff OpenWrt does.

His curiosity satiated, [Pyrofer] turned to more esoteric builds. WIth a color LCD from Sparkfun, he got an NES emulator running. This is all through hardware SPI, mind you. Simple 2D graphics are cool enough, but the standard graphical test for all low powered computers is, of course, Doom.

The game runs, but just barely. Still, [Pyrofer] is happy with the VoCore and with a little more work with the SPI and bringing a framebuffer to his tiny system, he might have a neat portable Doom machine on his hands.

Finding a Shell in a Bose SoundTouch

BOSE Bose, every salesperson’s favorite stereo manufacturer, has a line of WiFi connected systems available. It’s an impressively innovative product, able to connect to Internet Radio, Pandora, music libraries stored elsewhere on the network. A really great idea, and since this connects to a bunch of web services, you just know there’s a Linux shell in there somewhere. [Michael] found it.

The SoundTouch is actually rather easy to get into. The only real work to be done is connecting to port 17000, turning remote services on, and then connecting with telnet. The username is root.

The telnet service on port 17000 is actually pretty interesting, and we’re guessing this is what the SoundTouch iOS app uses for all its wizardry. [Michael] put a listing of the ‘help’ command up on pastebin, and it looks like there are commands for toggling GPIOs, futzing around with Pandora, and references to a Bluetooth module.

Interestingly, when [Michael] first suspected there could be Linux inside this box, he contacted Bose support for any information. He figured out how to get in on his own, before Bose emailed him back saying the information is proprietary in nature.

[Sprite_TM] Puts Linux in a Clock Radio

clock

[Sprite] needs an alarm clock to wake up in the morning, and although his phone has an infinitely programmable alarm clock, his ancient Phillips AJ-3040 has never failed him. It’s served him well for 15 years, and there’s no reason to throw it out. Upgrading it was the only way, with OLED displays and Linux systems inside this cheap box of consumer electronics.

After opening up the radio, [Sprite] found two boards. The first was the radio PCB, and the existing board could be slightly modified with a switch to input another audio source. The clock PCB was built around an old chip that used mains frequency as the time base. This was torn out of the enclosure along with the old multiplexed LCD.

A new display and brain for the clock was needed, and [Sprite] reached into his parts drawer and pulled out an old 288×48 pixel OLED display. When shining though a bit of translucent red plastic, it’s can be a reasonable facsimile of the old LEDs. The brains of the clock would be a Carambola Linux module. After writing a kernel module for the OLED, [Sprite] had a fully functional Linux computer that would fit inside a clock radio.

After having a board fabbed with the power supplies, I2C expanders, USB stereo DAC, and SPI port for the OLED, [Sprite] had a clock radio that booted Linux on an OLED screen. In the video below, [Sprite] walks through the functions of the clock, including setting one of the many alarms, streaming audio from the Internet, and changing the font of the display. There’s also a web UI for the clock that allows alarms to be set remotely – from a phone, even, if [Sprite] is so inclined.

[Read more...]

The CryptoCape For BeagleBone

[Josh Datko] was wandering around HOPE X showing off some of his wares and was kind enough to show off his CryptoCape to us. It’s an add on board for the BeagleBone that breaks out some common crypto hardware to an easily interfaced package.

On board the CryptoCape is an Atmel Trusted Platform Module, an elliptic curve chip, a SHA-256 authenticator, an encrypted EEPROM, a real time clock, and an ATMega328p for interfacing to other components and modules on the huge prototyping area on the cape.

[Josh] built the CryptoCape in cooperation with Sparkfun, so if you’re not encumbered with a bunch of export restrictions, you can pick one up there. Pic of the board below.

[Read more...]

Apple ][ Graphics as your Screensaver or Second Screen

apple2-xscreensaver-weather-demo

Hipsters rejoice, you can actually make those high-tech IPS panels look like crap. Really nostalgic crap. [Kaveen Rodrigo] wrote in to show how he displays weather data as his Apple ][ emulated screensaver.

2014-07-08-234300_1366x768_scrotHe’s building on the Apple2 package that is part of the xscreensaver available on Linux systems. The program has an option flag that allows you to run another program inside of it. This can be just about anything including using it as your terminal emulator. [Adrian] recently sent us the screenshot shown here for our retro edition. He is running bash and loaded up freenet just to enjoy what it used to be like in the good old days.

In this case, [Kaveen] is using Python to pull in, parse, and print out a Yahoo weather json packet. Since it’s just a program that is called when the screensaver is launched, you can use it as such or just launch it manually and fill your second monitor whenever not in use.

We gave it a whirl, altering his code to take a tuple of zip codes. Every hour it will pull down the data and redraw the screen. But we’ve put enough in there that you’ll be able to replace it with your own data in a matter of minutes. If you do, post a screenshot and what you’re using it for in the comments.

[Read more...]

Rooting The Nest Thermostat

nest-300x293 A few months ago, Google bought a $3.2 billion dollar thermostat in the hopes it would pave the way for smart devices in every home. The Nest thermostat itself is actually pretty cool – it’s running Linux with a reasonably capable CPU, and adds WiFi to the mix for some potentially cool applications. It can also be rooted in under a minute,

As [cj] explains, the CPU inside the Nest has a Device Firmware Update mode that’s normally used for testing inside the Nest factory. This DFU mode can also be used to modify the device without any restrictions at all.

With a simple shell script, [cj] plugs the Nest into his laptop’s USB port, puts the device into DFU mode, and uploads a two-stage booloader to enable complete control over the Linux-powered thermostat.

As a bonus, the shell script also installs an SSH server and enables a reverse SSH connection to get around most firewalls. This allows anyone to remotely control the Nest thermostat, a wonderful addition to the Nest that doesn’t rely on iPhone apps or a cloud service to remotely control your Internet enabled thermostat.

Video of the rooting process below.

[Read more...]

An Introduction To The BeagleBone PRU

BBB While the BeagleBone is usually compared to the Raspberry Pi, there are a few features that make the ‘Bone a vastly more capable single board computer. There is a small difference in the capabilities of the processor, but the real power of the BeagleBone comes from the PRUs available: two small cores that give the BeagleBone the hardware equivalent of bitbanging pins. [Texane] has put up two great tutorials for using the PRU in the BeagleBone that should be required reading for every BeagleBone owner.

The first tutorial goes over the capabilities of the PRUs in the BeagleBone and setting up the software environment to develop your own hardware interfaces with the PRU. While writing code for the PRU has usually involved the Beagleboard packages, TI has recently released a version of Code Composer Studio that gives the option to compile C code for the PRU.

[Texane] used this C compiler to rehash the earlier, assembly only PRU program, making development significantly easier. There’s still a bit of inline assembly, and the inline assembly support isn’t as advanced as in GCC, but it’s still much easier than the assembly only variant.

While [Texane] is using the PRU in his BeagleBone to develop something at a synchrotron facility, three are a few things where really fast hardware bitbanging comes in handy: it can be used to make a video card for a vintage mac, or any sort of VGA video card, really. Very cool stuff, especially now that you can write something in C.

Follow

Get every new post delivered to your Inbox.

Join 96,408 other followers