My Beef with Ham Radio

My amateur radio journey began back in the mid-1970s. I was about 12 at the time, with an interest in electronics that baffled my parents. With little to guide me and fear for my life as I routinely explored the innards of the TVs and radios in the house, they turned to the kindly older gentleman across the street from us, Mr. Brown. He had the traditional calling card of the suburban ham — a gigantic beam antenna on a 60′ mast in the backyard – so they figured he could act as a mentor to me.

Mr. Brown taught me a lot about electronics, and very nearly got me far enough along to take the test for my Novice class license. But I lost interest, probably because I was an adolescent male and didn’t figure a ham ticket would improve my chances with the young ladies. My ham ambitions remained well below the surface as life happened over the next 40 or so years. But as my circumstances changed, the idea of working the airwaves resurfaced, and in 2015 I finally took the plunge and earned my General class license.

The next part of my ham story is all-too-familiar these days: I haven’t done a damn thing with my license. Oh, sure, I bought a couple of Baofeng and Wouxun handy-talkies and lurked on the local repeaters. I even bought a good, solid HF rig and built some antennas, but I’ve made a grand total of one QSO — a brief chat with a ham in Texas from my old home in Connecticut on the 10-meter band. That’s it.

Continue reading “My Beef with Ham Radio”

Florida Man Hates Amateur Radio

Any amateur radio operator who is living under a homeowner’s association, covenant, or has any other deed restriction on their property has a problem: antennas are ugly, and most HOAs outright ban everything from 2-meter whips to unobtrusive J-pole antennas.

Earlier this year, the ARRL got behind a piece of legislation called the Amateur Radio Parity Act. This proposed law would amend FCC’s Part 97 rules for amateur stations and direct, ‘Community associations to… permit the installation and maintenance of effective outdoor Amateur Radio antennas.’ This bill passed the US House without objection last September.

Last week, the Amateur Radio Parity Act died in the US Senate. Sen. Bill Nelson (D-FL), the ranking member of the Senate committee on Commerce, Science, and Transportation, refused to move the bill forward in the Senate. The ARRL has been in near constant contact with Senator Nelson’s office, but time simply ran out before the end of the 114th Congress. The legislation will be reintroduced into the 115th Congress next year.

Demystifying Amateur Radio Callsigns

Regular Hackaday readers will be familiar with our convention of putting the name, nickname, or handle of a person in square brackets. We do this to avoid ambiguity as sometimes names and particularly nicknames can take unfamiliar forms that might be confused with other entities referred to in the text. So for example you might see them around [Bart Simpson], or [El Barto]. and occasionally within those brackets you’ll also see a capitalised string of letters and numbers after a name. For example the electronic music pioneer [Bob Moog, K2AMH], which most of you will recognise as an amateur radio callsign.

Every licenced radio amateur is issued one by their country’s radio authority as a unique identifier, think of it as similar to a car licence plate. From within the amateur radio bubble those letters and numbers can convey a significant amount of information about where in the world its user is located, when they received their licence, and even what type of licence they hold, but to outsiders they remain a mysterious and seemingly random string. We’ll now attempt to shed some light on that information, so you too can look at a callsign in a Hackaday piece or anywhere else and have some idea as to its meaning.

Continue reading “Demystifying Amateur Radio Callsigns”

Old Heatsink Lets Ham Push Duty Cycle for Digital Modes

Listen to the amateur radio bands long enough, and you’ll likely come to the conclusion that hams never stop talking. Of course it only seems that way, and the duty cycle for a transmitter operating in one of the voice modes is likely to be pretty low. But digital modes can up the duty cycle and really stress the finals on a rig, so this field-expedient heat sink for a ham transceiver is a handy trick to keep in mind.

This hacklet comes by way of [Kevin Loughin (KB9RLW)], who is trying to use his “shack-in-a-box” Yaesu FT-817 for digital modes like PSK31. Digital modes essentially turn the transceiver into a low-baud modem and thus messages can take a long time to send. This poses a problem for the 5-watt FT-817, which was designed for portable operations and doesn’t have the cooling fans and heavy heatsinks that a big base station rig does. [Kevin] found that an old 486 CPU heatsink clamped to a lug on the rear panel added enough thermal mass to keep the finals much cooler, even with a four-minute dead key into a dummy load at the radio’s full 5-watt output.

You may scoff at the simplicity of this solution, and we’ll concede that it’s far from an epic hack. But sometimes it’s the simple fixes that it pays to keep in mind. However, if your project needs a little less seat-of-the-pants and a little more engineering, be sure to check out [Bil Herd]’s primer on thermal management.
Continue reading “Old Heatsink Lets Ham Push Duty Cycle for Digital Modes”

HFSat and The All-HF Amateur Radio Satellite Transponder

One facet of the diverse pursuit that is amateur radio involves the use of amateur radio satellites. These have a long history stretching back to the years shortly after the first space launches, and have been launched as “piggy-back” craft using spare capacity on government and commercial launches.

Though a diverse range of payloads have been carried by these satellites over the years, the majority of amateur radio satellites have featured transponders working in the VHF and UHF spectrum. Most often their links have used the 2m (144 MHz) and 70cm (430MHz) bands. A few have had downlinks in the 10m (28MHz) band, but this has been as far as they have ventured into the HF spectrum.

A new cubesat designed and built by trainees at the US Naval Academy promises to change all that, because it will feature an all-HF transponder with a 15m (21MHz) uplink and a 10m downlink. To that end it will carry a full size 10m wire dipole antenna. The 30KHz wide transponder is an inverting design intended to cancel out the effects of Doppler shift. In their write-up they provide a fascinating description of many aspects of cubesat design, one which should be of significant interest beyond the world of amateur radio.

If the subject of amateur radio in space interests you, have a look at our series on the matter, first covering the OSCAR satellites, and then our recent feature on its use in manned missions.

[via Southgate ARC]

Hams in Space Part 2: The Manned Spaceflights

Whether it’s trying to make contacts across the planet with a transmitter that would have a hard time lighting an LED, or blasting signals into space and bouncing them off the moon, amateur radio operators have always been on the forefront of communications technology. As mankind took to space in the 1950s and 1960s, hams went along for the ride with the first private satellites. But as successful as the OSCAR satellites were, they were still at best only beacons or repeaters in space. What was needed was the human touch – a real live operator making contacts with people on the ground, showing the capabilities of amateur radio while generating public interest in the space program. What was needed was a ham in space. Continue reading “Hams in Space Part 2: The Manned Spaceflights”

Put That Amateur Radio License to Use on 915 MHz

Amateur radio enthusiasts in the US will be interested in Faraday, an open-source digital radio that runs on 915 MHz, which amateur radio enthusiasts may know better as the 33 cm band.

You can transmit on 915 MHz without a license (in the US), taking advantage of the Industrial, Scientific, and Medical (ISM) exemption. This means that there’s commodity hardware available for sending and receiving, which is a plus. But you can’t do so with any real power unless you have an amateur radio license. And that’s what makes Faraday interesting — it makes it very easy to transmit and receive digital data, with decent power and range, if you’re licensed. The band is currently under-utilized, so go nuts!

The hardware design and documentation is online, and so is the firmware. The founders of the project would like you to build out a big network of these devices, possibly meshing them together. Our only regret is that the 33 cm band is only really open for use in the US, both with a license and without. Of course, there’s very little the Faraday team can do about that.

We’re no strangers to digital-mode amateur radio around here. But if you’re an amateur who hasn’t played around with digital modes yet, this might be a good way to get your feet wet.

Thanks to [Daniel] for the tip!