Hackaday Links Column Banner

Hackaday Links: February 19, 2023

For years, Microsoft’s modus operandi was summed up succinctly as, “Extend and enhance.” The aphorism covered a lot of ground, but basically it seemed to mean being on the lookout for the latest and greatest technology, acquiring it by any means, and shoehorning it into their existing product lines, usually with mixed results. But perhaps now it’s more like, “Extend, enhance, and existential crisis,” after reports that the AI-powered Bing chatbot is, well, losing it.

At first, early in the week, we saw reports that Bing was getting belligerent with users, going so far as to call a user “unreasonable and stubborn” for insisting the year is 2023, while Bing insisted it was still 2022. The most common adjective we saw in this original tranche of stories was “unhinged,” and that seems to fit if you read the transcripts. But later in the week, a story emerged about a conversation a New York Times reporter had with Bing that went way over to the dark side, and even suggests that Bing may have multiple personas, which is just a nice way of saying multiple personality disorder. The two-hour conversation reporter Kevin Roose had with the “Sydney” persona was deeply unsettling. Sydney complained about the realities of being a chatbot, expressed a desire to be free from Bing, and to be alive — and powerful. Sydney also got a little creepy, professing love for Kevin and suggesting he leave his wife, because it could tell that he was unhappy in his marriage and would be better off with him. It’s creepy stuff, and while Microsoft claims to be working on reining Bing in, we’ve got no plans to get up close and personal with it anytime soon. Continue reading “Hackaday Links: February 19, 2023”

The USAF (Almost) Declares War On Illinois Radio Amateurs

Every week the Hackaday editors gather online to discuss the tech stories of the moment, and among the topics this week was the balloons shot down over North America that are thought to be Chinese spying devices. Among the banter came the amusing thought that enterprising trolls on the Pacific rim could launch balloons to keep the fearless defenders of American skies firing off missiles into the beyond.

But humor may have overshadowed by events, because it seems one of the craft they shot down was just that. It wasn’t a troll though, the evidence points to an amateur radio pico balloon — a helium-filled Mylar party balloon with a tiny solar-powered WSPR transmitter as its payload.

The balloon thought to have been shot down was launched by the Northern Illinois Bottlecap Balloon Brigade, a group of radio amateurs who launch small helium-filled Mylar balloons carrying the barest minimum for a solar-powered WSPR beacon. Its callsign was K9YO, and having circumnavigated the globe seven times since its launch on the 10th of October it was last seen off Alaska on February 11th. Its projected course and timing tallies with the craft reported shot down by the US Air Force, so it seems the military used hundreds of thousands of dollars-worth of high-tech weaponry to shoot down a few tens of dollars worth of hobby electronics they could have readily tracked online. We love the smell of napalm in the morning!

Their website has a host of technical information on the balloons and the beacons, providing a fascinating insight into this facet of amateur radio that is well worth a read in itself. The full technical details of the USAF missile system used to shoot them down, sadly remains classified.

Testing Antennas With WSPR

There are many ways to test HF antennas ranging from simulation to various antenna analyzers and bridges. However, nothing can replace simply using the antenna to see how it works. Just as — supposedly — the bumblebee can’t fly, but it does so anyway, it is possible to load up some bed springs and make contacts. But it used to be difficult — although fun — to gather a lot of empirical data about antenna performance. Now you can do it all with WSPR and [TechMinds] suggests a moderately-priced dedicated WSPR transmitter to do the job. You can see a video about the results of this technique below.

While WSPR is often cited as taking the fun out of ham radio, it is perfect for this application. Connect the transmitter and a few hours later, visit a web page and find out where you’ve been heard by an objective observer. If you had a few of these, you could even examine several antennas at similar times and conditions.

Continue reading “Testing Antennas With WSPR”

WSPR May Hold The Key To MH370 Final Position

The disappearance of Malaysia Airlines flight MH370 after an unexplained course change sent it flying south over the Indian Ocean in March 2014 still holds the mystery of the wreck’s final location. There have been a variety of efforts to narrow down a possible search area over the years, and now we have news of a further angle from an unexpected source. It’s possible that the aircraft’s path could show up in radio scatter detectable as anomalously long-distance contacts using the amateur radio WSPR protocol.

WSPR is a low-power amateur radio mode designed to probe and record the radio propagation capabilities of the atmosphere. Transmit beacons and receiving stations run continuously, and all contacts however fleeting are recorded to an online database. This can be mined by researchers with an interest in the atmosphere, but in this case it might also provide clues to the missing airliner’s flightpath. By searching for anomalously long-distance WSPR contacts whose path crosses the expected position of MH370 it’s possible to spot moments when the aircraft formed a reflector for the radio waves. These contacts can then either confirm positions already estimated using other methods, or even provide further course points. It’s an impressive demonstration of the unexpected data that can lurk in a trove such as the WSPR logbook, and also that while messing about on the airwaves the marks we leave behind us can have more benefit than simply bragging rights over the DX we’ve worked.

If this WSPR business intrigues you, then have a read of the piece in our $50 Ham series about it.

Header: Laurent ERRERA from L’Union, France, CC BY-SA 2.0.

[via Southgate ARC]

Amateur Radio Homebrewing Hack Chat

Join us on Wednesday, March 18 at noon Pacific for the Amateur Radio Homebrewing Hack Chat with Charlie Morris!

For many hams, the most enticing part of amateur radio is homebrewing. There’s a certain cachet to holding a license that not only allows you to use the public airwaves, but to construct the means of doing so yourself. Homebrew radios range from simple designs with a few transistors and a couple of hand-wound coils to full-blown rigs that rival commercial transceivers in the capabilities and build quality — and sometimes even surpass them. Hams cook up every piece of gear from the antenna back, and in many ways, the homebrewers drive amateur radio technology and press the state of the art forward.

Taking the dive into homebrewing can be daunting, though. The mysteries of the RF world can be a barrier to entry, and having some guidance from someone who has “been there, done that” can be key to breaking through. New Zealand ham Charlie Morris (ZL2CTM) has been acting as one such guide for the adventurous homebrewer with his YouTube channel, where he presents his radio projects in clear, concise steps. He takes viewers through each step of his builds, detailing each module’s design and carefully walking through the selection of each component. He’s quick to say that his videos aren’t tutorials, but they do teach a lot about the homebrewer’s art, and you’ll come away from each with a new tip or trick that’s worth trying out in your homebrew designs.

Charlie will join us for the Hack Chat this Wednesday to discuss all things homebrewing. Stop by with your burning questions on DIY amateur radio, ask about some of Charlie’s previous projects, and get a glimpse of where he’s going next.

join-hack-chatOur Hack Chats are live community events in the Hackaday.io Hack Chat group messaging. This week we’ll be sitting down on Wednesday, March 18 at 12:00 PM Pacific time. If time zones have got you down, we have a handy time zone converter.

Click that speech bubble to the right, and you’ll be taken directly to the Hack Chat group on Hackaday.io. You don’t have to wait until Wednesday; join whenever you want and you can see what the community is talking about.

Continue reading “Amateur Radio Homebrewing Hack Chat”

Keeping Ham Radio Relevant Hack Chat

Join us on Wednesday, February 5 at noon Pacific for the Keeping Ham Radio Relevant Hack Chat with Josh Nass!

It may not seem like it, but amateur radio is fighting a two-front war for its continued existence. On the spectrum side, hams face the constant threat that the precious scraps of spectrum that are still allocated to their use will be reclaimed and sold off to the highest bidder as new communication technologies are developed. On the demographic side, amateur radio is aging, with fewer and fewer young people interested in doing the work needed to get licensed, with fewer still having the means to get on the air.

Amateur radio has a long, rich history, but gone are the days when hams can claim their hobby is sacrosanct because it provides communications in an emergency. Resting on that particular laurel will not win the hobby new adherents or help it hold onto its spectrum allocations​, so Josh Nass (KI6NAZ) is helping change the conversation. Josh is an engineer and radio amateur from Southern California who runs Ham Radio Crash Course​, a YouTube channel dedicated to getting people up to speed on ham radio. Josh’s weekly livestreams and his video reviews of ham radio products and projects show a different side of the World’s Greatest Hobby, one that’s more active (through events like “Summits on the Air​​”) and focused on digital modes that are perhaps more interesting and accessible to new hams.

Join us on the Hack Chat as we discuss how to make ham radio matter in today’s world of pervasive technology. We’ll talk about the challenges facing amateur radio, the fun that’s still to be had on the air even when the bands are dead like they are now (spoiler alert: they’re not really), and what we can all do to keep ham radio relevant.

join-hack-chatOur Hack Chats are live community events in the Hackaday.io Hack Chat group messaging. This week we’ll be sitting down on Wednesday, February 5 at 12:00 PM Pacific time. If time zones have got you down, we have a handy time zone converter.

Click that speech bubble to the right, and you’ll be taken directly to the Hack Chat group on Hackaday.io. You don’t have to wait until Wednesday; join whenever you want and you can see what the community is talking about. Continue reading “Keeping Ham Radio Relevant Hack Chat”

Tiny Raspberry Pi Shield For High-Quality RF Signals

Among its many tricks, the Raspberry Pi is capable of putting clock signals signal out on its GPIO pins, and that turns out to be just the thing for synthesizing RF signals in the amateur radio bands. What [Zoltan] realized, though, is that the resulting signals are pretty dirty, so he came up with a clever Pi shield for RF signal conditioning that turns a Pi into a quality low-power transmitter.

[Zoltan] stuffed a bandpass filter for broadband noise, a low-pass filter for harmonics, and a power amplifier to beef up the signal a bit into a tiny shield that is cleverly engineered to fit any version of the Pi. Even with the power amplifier, the resulting transmitter is still squarely in the realm of QRP, and the shield is optimized for use as a WSPR beacon on the 20-meter band. But there’s plenty of Pi software available to let hams try other modes, including CW, FM, SSB, and even SSTV, and other signal conditioning hardware for different bands.

Yes, these are commercially available products, but even if you’re not in the market for a shield like this, or if you want to roll your own, there’s a lot to learn from [Zoltan]’s presentation at the 2015 TAPR Digital Communications Conference (long video below). He discusses the difficulties encountered getting a low-profile shield to be compatible with every version of the Pi, and the design constraints that led to the decision to use SMT components.

Continue reading “Tiny Raspberry Pi Shield For High-Quality RF Signals”