Make W7 64 Bit Play Nice With Your Programmer

External EPROM burners are pretty handy gadgets to have around. They obviously can read and write EPROMS, but often times they will also handle a pile of PIC’s, some AVR’s, and other programmable logic like PAL/GAL and CLPD’s. While you can often find old models floating around for cheap (or free in my case) there are a few issues to be hammered out.

Typically the models you’re going to get for a song and a dance are old parallel port models that use software in MS-DOS or Windows and hasn’t been updated since. The software typically bit bangs the port using it like a 1 byte wide GPIO line, and this was a common trick, that is long gone from current operating systems by default.

[Doug] sought to find a solution to using one of these gadgets on Windows 7 X64, and lots of Google-fu, poking at libraries, and a little code modification he does just that getting his Sivava Willem EPROM programmer working like a champ on a nice new i7 with a parallel port add in card.

An Introduction To DC Boost Converters

simple_boost_converter

If you are planning on creating some sort of Nixie tube display, you will undoubtedly need to find yourself a high voltage DC power supply. If you don’t want to add a transformer to your project, you can always opt to build a boost converter instead. [Andrew Moser] shows us just how easy it is to build one, discussing the theory behind simple boost converters along the way.

Boost converters are often driven by dedicated ICs, but in this case the PWM signal from an Arduino does the job just fine. [Andrew] covers the process of choosing the proper components for the circuit, discussing duty cycles and components to avoid lest your boost converter die an untimely death.

He shows us how to implement a feedback system to get a more precise output voltage, but as Lady Ada has shown us, an open loop works pretty well too.

For the beginners that want to just get things up and running, his instructions and code should be sufficient, but [Andrew] provides plenty of reference links for those looking to delve deeper into the subject.

Impressive Lighting Console Offers Professional Features For A Fraction Of The Price

diy_dmx_lighting_control_panel

Hackaday reader [Michael] wrote in to share the build details of an impressive lighting console he has been working on for some time. He says that the 36+ channel console is on par with lighting rigs costing upwards of $5,000, but his was constructed for just around $1,000 – quite the substantial savings.

The console was constructed around an old IBM desktop computer, which handles all of the DMX output as well as preset management. An array of 20 ATMega 328Ps running the Arduino bootloader are scattered throughout the device, 18 of which are used to manage the six fader panels, while the remaining two handle management tasks. Aside from the fader banks, the console features a main control board featuring several LCD screens along with 17 capacitive touch buttons used for menu navigation and console control.

While [Michael] is finished building the board, he has just begun the documentation of the construction process. His blog should be updated regularly with more details, so be sure to check back often. Code, as well as hopefully tons of pictures and videos are all forthcoming.

[Edit: Cost comparison update]

An “Earthcore” Hexapod With Minimal Mechanical Parts

Although hexapod robots have been featured on [HAD] many times, this one features a really cool minimalistic design. With few mechanical parts to support the three servos, the “Earthcore Hexapod Robot” has a unique gait, tending to quickly slide the driving legs rather than picking the whole robot up. Although it would probably have trouble on rough terrain, for use on a smooth floor or counter, this ‘bot is perfectly suited.  Check out the video of it after the break.

Another thing that really stands out on this bot is the blue LED “eyes” and it’s tubing “hat.”  The “hat” hides the wiring for the three servos, while most of the circuitry looks to be in between the eyes. The main controller is a PICAXE 18M2 micro-controller. 3 AAA batteries seen behind the tubing power the unit.

As for the name “Earthcore”, it’s based on a book by [Scott Sigler]. If there is a movie version in the works, we hope he calls [onefivefour] to help with the special effects! Continue reading “An “Earthcore” Hexapod With Minimal Mechanical Parts”

Enhance Your Magnetic Silly Putty With Personal Lubricants

better_magnetic_putty_with_personal_lubricant

Instructables user [killbox] seems to have come across a process that actually makes magnetic silly putty “better”, depending on your specific needs. He had tons of fun making a batch of magnetic putty, but thought that the addition of iron oxide made it stiff and a bit slow moving for his tastes.

He tried to find a household item that could act as silly putty thinner, but after trying various oils, gylcerin, and rubbing alcohol, he came up empty handed. Undeterred, he researched how silly putty itself is made, and based on its list of ingredients, decided to seek out some sort of silcone-based lubricant.

He headed out to the local sex shop, and spent some time browsing through the “personal lubricant” section, in hopes of finding what he needed. He settled on ”Gun Oil”, a silicone lubricant that also contained Dimethicone, an item on the ingredient list of the lubricant he initially used to make the batch of magnetic putty.

After adding the lubricant, he found that the putty retained its texture, but flowed far more easily. The thinner putty also consumes rare earth magnets more quickly than its unaltered brethren, as you can see in the picture above.

We’re not sure how far you could push the ferro-putty before it would become a mess, but it’s certainly warrants further experiments.

[Thanks, Mike]

Lighted Shoe Ruffles — He’ll Never Step On Your Toes Again

Whether for fashion, emergency lighting, or just to make a statement, these lighted shoe clips make for a unique footwear accessory. [Becky Stern], who we’ve seen before hacking automatic knitting machines, tackles this quick lighted project.

The electronics are simple, two LEDs connected in parallel to a button battery by some conductive thread. The circuit is the same as an LED throwie, but she’s using a sewable battery holder. The ruffle is made by cutting out and folding several circles of fabric. We’re not too used to working with this building material and were glad to hear her tip on fusing the cut edges with a lighter. She’s also got a good tip about bending one LED lead in a square shape and the other in a round shape to keep track of the polarity. After sewing everything together and completing the circuit with the conductive thread [Becky] adds a paper clamp making this easy to use with any shoe. In fact, the guy’s don’t have to miss out on the fun as this could easily double as a boutineer.

Don’t miss [Becky’s] complete walk through video embedded after the break.

Continue reading “Lighted Shoe Ruffles — He’ll Never Step On Your Toes Again”

Play-by-play Of A High Altitude Balloon Flight

[Greg Intermaggio] and [Shumit DasGupta] at Techsplosion launched a high altitude balloon last week that climbed to 90,000 feet above sea level somewhere over California. The play-by-play of the flight is one of the better stories we’ve seen on high altitude balloon builds.

The balloon, christened VGER-1, carried a SPOT satellite GPS messanger to send telemetry back to the ground. We’ve seen a few home brew balloon tracking devices, but [Greg] decided to use an off-the-shelf solution for the sake of simplicity. Like other balloons the VGER-1 carried a CanonPowershot camera with CHDK firmware.

Continue reading “Play-by-play Of A High Altitude Balloon Flight”