Self-Balancing Robot Keeps Getting More Features

self-balancing-robot-gets-more-features

It’s a lot of fun to see a self-balancing robot project. Rarely do they go much further than being able to keep themselves upright while being piloted remotely and annoyingly shoved by their creator as proof of their ability to remain standing on two wheels. This little anthropomorphic guy is the exception to the rule. It’s the product of [Samuel Matos] who says he didn’t have a specific purpose in mind, but just kept adding features as they came to him.

Starting with a couple of carbon fiber plates [Samuel] cut the design by hand, using stand-offs to mount the NEMA 17 stepper motors and to connect the two halves of the chassis. It looks like he used some leftover material to make a nice little stand which is nice when coding at his desk as seen above. There’s also a carbon-fiber mask which makes up the face atop an articulated neck. It has two ultrasonic range-finding sensors as eyes, and the Raspberry Pi camera module as the nose. The RPi board powerful enough to run OpenCV which has kept [Samuel] busy. He set up a course in his living room containing tags directing where the little guy should go. It can also follow a tennis ball as it rolls around the room. What we found most impressive in the clip after the break is its ability to locate the next tag after making a turn.

Continue reading “Self-Balancing Robot Keeps Getting More Features”

RFID Door Access Robot

RFID Door orbot

We love hackerspaces. Some of the most innovative solutions come from them thanks to having like-minded people all hanging out in the same place. Just take a look at this awesome RFID door system from the Lansing Makers Network that doesn’t require any modification of the door.

The majority of the mechanism was previously a model draw bridge that the space purchased from a surplus store — it just needed a bit of hacking. Almost all members of the space had some part in the project, whenever the build hit a snag, another member always had the right solution. It works by using a windshield motor that tightens a seatbelt around the push-bar latch of the door — the beauty of the system is it is completely non-damaging to the door, and the door works exactly the same as before. The whole system is controlled by RFID tags, which the members have as keys to the space.

It’s an awesome project and [Brian] has written a really great write-up on it, which also happens to segue nicely into the topic of hackerspaces. He describes hackerspaces as

the Wikipedia of real life, and everything else here [tools, equipment, resources] is just the lure that pulls us all together.

Stick around after the break to see the mechanism in action!

Continue reading “RFID Door Access Robot”

Hackaday Links: November 10, 2013

hackaday-links-chain

[Henryk Gasperowicz], the wizard of electrons who makes LEDs glow for no apparent reason, has put up another one of his troll physics circuits. We have no idea how he does it (he does say he’s using wireless energy transmission) so a few solution videos would be cool, [Henryk].

Altoids tins make great electronic enclosures, but how about designing your PCBs to fit mint and gum containers? Here’s a Trident USBASP, a tiny Tic Tac ISP thingy, and a Mentos USB to JTAG interface.

By the end of this week, the PS4 will be out, along with the new PS4 camera. It’s a great camera – 1280×800 at 60Hz – but unless someone develops a driver for it, it shall forever remain tethered to a PS4. Luckily, there’s a project to develop a PS4 camera driver, so if you have some USB 3.0 experience, give it a shot.

Multimeter teardowns? [David]’s got multimeter teardowns. It’s an HP 3455A, a huge bench top unit from the 80s. This is, or was, pro equipment and strange esoteric components definitely make a showing. ±0.01% resistors? Yep. Part two has some pics of the guts and a whole ton of logic.

The US Air Force Academy just moved their embedded systems course over to the MSP430. Course director [Capt Todd Branchflower] just put all the course materials online, with the notes, datasheets, and labs available on Github.

KiCad Video Series: From Concept To Manufacture

Many of our readers took the habit of using Eagle to design their PCBs. Even if you’ll find plenty of support for this software as well as a lot of parts libraries, the software comes with limitations. The useable board area is limited to 4×3.2 inches, only two signal layers can be used and more importantly the schematics editor can only create one sheet. On the other side, some of you may already know KiCad, a free open source and unrestricted schematics and layout software. [Chris] just tipped us of a video series he made, showing people how to design and build their very first PCB using this software. It’s a simple 555 circuit, but goes through all the steps necessary to design a PCB that costs only $5 through OSHpark… and will blink by the end. All the videos are also embedded after the break.

Continue reading “KiCad Video Series: From Concept To Manufacture”

One-night No Budget CNC Machine

The Hackerspace Kraków in Poland hosts a weekly event on Fridays called NightHack. The idea is simple. It’s late Friday night, all the stores are closed — something needs to be hacked.

Just this past Friday night, they decided to try making a CNC machine using only what they had in the space. And gosh darn it, did they ever succeed! The build makes use of an Arduino Mega, broken Playstation 3 drives, a few spare L293D ICs, some hot glue, and wood. The resulting CNC machine is an awesome example of what can be done in a night with the right group of people working together.

It might not be powerful enough to do milling, but works quite well as a small CNC drawing plotter with its massive 5x5cm work area, with a resolution of 0.16mm. Next week they hope to modify it to allow for PCB drilling, which at the right feed rates, might just be possible!

Continue reading “One-night No Budget CNC Machine”

Brute Forcing An Android Phone

[Brett’s] girlfriend is very concerned about cell phone security — So much so that she used a PIN so secure, even she couldn’t remember it.

Beyond forgetting the PIN, the phone also had encryption enabled, the bootloader locked, and zero permissions for the Android Device Manager to change the PIN. Lucky for her, [Brett] had purchased an STM32F4Discovery Development Board a few months ago, and was itching for a suitable project for it.

Now unfortunately, Android allows you to pick a PIN of anywhere between 4 and 8 digits, which as you can guess, results in a massive number of possible permutations. She was pretty sure it was only 6 digits, and that she didn’t use a 1, 2, or 3… and she thought it started with a 4 or a 7… and she didn’t think any of the digits were repeated… This helped narrow it down a bit, from 1 million possibilities to about 5,000 — assuming all of the boundary conditions she remembers are in fact correct.

[Brett] started by writing a C library to generate permutations of the PIN, testing the board on his own phone to make sure it works with a known PIN, and boom, they were in business.

28,250 PIN attempts later, they decided they were not. Did we mention you can only enter 5 PINs in every 30 seconds?

Continue reading “Brute Forcing An Android Phone”

Morph: Adaptive Spaceframe

prototype_1.jpg.client.x675

[William Bondin] is working on a rather interesting project, a tetrahedron morphing robot called Morphs (Mobile Reconfigurable Polyhedra). 

It is able to move by the extension of each of its telescopic edges, and as it morphs, the centre of gravity shifts, allowing it to roll over. It is far from an efficient way to move, but it is quite entertaining to watch!

The custom two-directional linear actuators were designed to ensure the weight is symmetrically distributed on each axis, and they were able get the current draw down to about 200mA during actuation, which means with a few strategically placed battery cells, it’ll be able to go wireless too. The prototype unit is controlled by a single Arduino, which sends the commands to each motor-encoder couple.

[William] is hoping to develop it into a full scale architectural prototype, and by 2015 hopes to have these interactive robotic structures rolling around public parks. The architectural end goal is to allow for buildings to respond to environmental inputs, like daylight and temperature.

Confused? Check out the video after the break.

Continue reading “Morph: Adaptive Spaceframe”