Ford And HP Teamed Up To Drive Down Plastic Waste

This mass manufacturer movement towards electric cars is one thing, but what about sustainability on the plastic part production line? Ford and HP have teamed up to turn used 3D printed parts and powders into pellets that will be fodder for injection-molded parts — specifically the fuel-line clips for Super Duty F250 trucks.

Two of the sustainably-made fuel clips.

According to Ford’s press release, their goal is to reach 100% sustainable materials in all their vehicles, not just the diesel-drinking Super Duty. Their research team found ten other Fords whose existing fuel-line clips could instead be made sustainably, and the company plans to implement the recycled plastic clips on all future models.

There are all sorts of positives at play here: the recycled clips cost 10% less to make and end up weighing 7% less than traditionally-made clips, all the while managing to be more chemical and moisture resistant.

And so much plastic will be kept out of landfills, especially once this idea takes off and more manufacturers get involved with HP or form other partnerships. One of the sources of Ford’s plastic is Smile Direct Club, which has 60 printers cranking out over 40,000 dental aligners every day.

There’s more than one way to combine 3D printing and sustainability. Did someone say fungal sound absorbers?

[Images via Ford]

This Vintage LED Matrix Lives In A Gold Bathtub

Early LED displays came in all sorts of configurations. Because the LED was fairly new technology, all kinds of ideas were getting tried, and with all that work there was plenty of opportunity for hardware that didn’t make the cut to fall into obscurity. That’s exactly what happened to the Hewlett-Packard 5082-7002, a 5×7 LED matrix display with something many of its brethren didn’t: an oversized gold tub to sit in.

It doesn’t seem that these displays were ever used in any actual products, and its origins are a mystery, but the device itself was nevertheless assigned an HP part number. Beyond that, not much is known about them, but [Industrial Alchemy] reminds us that many early LED devices were poorly documented and never produced in any real quantities. They became forgotten hardware, waiting to be rediscovered.

The 5082-7002 has a oversized gold tub that makes the 5×7 LED matrix mounted inside look puny by comparison, and reading any display made from these units would be difficult because the large size of the device would mean a lot of empty space between each character or digit. But it’s definitely got a striking look to it, no doubt about that.

What’s neat is that the 5802-7002 actually showed up in a video we featured with a look back at cool old LED technology. If you would like to (briefly) see the HP 5802-7002 a bit closer under a microscope, here is a link to the video, cued to 2:19.

Upgrading A Classic Function Generator

If you need an oscilloscope, function generator, or other piece of kit for your electronics workbench, there are plenty of modern options. Dropping $4,000 for a modern oscilloscope is nice if you have the money, but if you’d rather put it to better use there are great options that don’t cost a fortune. There are some addons that can turn a smartphone into an oscilloscope but one of the best values out there are older pieces of equipment from the 80s that still work great. You can even upgrade them with some more modern features too, like [NFM] did with this vintage function generator.

This function generator is an HP3325A and it is several decades old, so some work was needed just to restore it to original working condition. The cooling fan and capacitors all needed to be replaced, as well as a few other odds and ends. From there [NFM] set about adding one of the two optional upgrades available for this device, the high voltage output. This allows the function generator to output 40 volts peak-to-peak at 40 milliamps. While he did have an original version from HP, he actually had a self-made design produced that matches the function of the original.

Even if you don’t have this specific function generator, this guide goes into great details about the functioning of older equipment like this. Most of the parts are replaceable and upgrades aren’t completely out of the question like some modern equipment, and with the right care and maintenance these pieces of equipment could last for decades longer.

Continue reading “Upgrading A Classic Function Generator”

Retrotechtacular: The $5,000 40 Pound HP Classroom Computer

See if you can talk your local school district into buying a computer that costs about $5,000 and weighs 40 pounds. That was HP’s proposition to schools back in 1968 so really it is more like $35,000 today. The calculator had a CRT display for the RPN stack that you could mirror on a big screen. You could also get a printer or plotter add-on. Pretty hot stuff for the ’60s.

The 1970 videos promoting the HP 9100, posted by the [Computer History Archive Project], shows something we’d think of as a clunky calculator, although by the standards of the day it was a pretty good one with trig functions and a crude programming capability.

Continue reading “Retrotechtacular: The $5,000 40 Pound HP Classroom Computer”

Cesium Clock Teardown, Or Quantum Physics Playground

Half the fun of getting vintage test equipment is getting to open it up. Maybe that’s even more than half of the fun. [CuriousMarc] got an HP 5061A Cesium clock, a somewhat famous instrument as the model that attempted to prove the theory of relativity. The reason? The clock was really the first that could easily be moved around, including being put on an airplane. You can watch the video below.

According to the video, you can simplify special relativity to saying that time slows down if you go fast — that is known as time dilation. General relativity indicates that time slows down with increasing gravity. Therefore, using airborne Cesium clocks, you could fly a clock in circles high up or fly at high speeds and check Einstein’s predictions.
Continue reading “Cesium Clock Teardown, Or Quantum Physics Playground”

Dissecting China-Sourced Vintage HP 1970s ICs: Genuine Or Not?

While repairing a real-time clock module for a 1970s HP computer that had been damaged by its leaky internal battery, [CuriousMarc] began to suspect that maybe the replacement clock chips which he had sourced from a seller in China were the reason why the module still wasn’t working after the repairs. This led him down the only obvious path: to decap and inspect both the failed original Ti chip and the replacement chip.

The IC in question is the Texas Instruments AC5948N (along with the AC5954N on other boards), which originally saw use in LED watches in the 1970s. HP used this IC in its RTC module, despite it never having been sold publicly. This makes it even more remarkable that a Chinese seller had the parts in stock. As some comments on the YouTube video mention, back then there wasn’t as much secrecy around designs, and it’s possible someone walked out of the factory with one of the masks for this chip.

Whether true or not, as the video (also included after the break) shows, both the original 1970s chip and the China-sourced one look identical. Are they original stock, or later produced from masks that made their way to Asia? We’ll probably never know for sure, but it does provide an exciting opportunity for folk who try to repair vintage equipment.

Continue reading “Dissecting China-Sourced Vintage HP 1970s ICs: Genuine Or Not?”

A Modern Take On A Piece Of Old Test Equipment

The HP 11947A is something of a footnote in the back catalogue of Hewlett Packard test equipment. An attenuator and limiter with a bandwidth in the megahertz rather than the gigahertz. It’s possible that few laboratories have much use for one in 2019, but it does have one useful property: a full set of schematics and technical documentation. [James Wilson] chose the device as the subject of a clone using surface mount devices.

The result is very satisfyingly within spec, and he’s run a battery of tests to prove it. As he says, the HP design is a good one to start with.   As a device containing only passive components and with a maximum frequency in the VHF range this is a project that makes a very good design exercise for anyone interested in RF work or even who wishes to learn a bit of RF layout. At these frequencies there are still a significant number of layout factors that can affect performance, but the effect of conductor length and  stray capacitance is less than the much higher frequencies typically used by wireless-enabled microcontrollers.