The Difference Between 4WD And AWD

Car manufacturers will often tout a vehicle’s features to appeal to the market, and this often leads to advertisements featuring a cacophony of acronyms and buzzwords to dazzle and confuse the prospective buyer. This can be particularly obvious when looking at drivelines. The terms four-wheel drive, all-wheel drive, and full-time and part-time are bandied about, but what do they actually mean? Are they all the same, meaning all wheels are driven or is there more to it? Let’s dive into the technology and find out.

Part-Time 4WD

Part-time four-wheel drive is the simplest system, most commonly found on older off-road vehicles like Jeeps, Land Cruisers and Land Rovers up to the early 1990s, as well as pickup trucks and other heavy duty applications. In these vehicles, the engine sends its power to a transfer case, which sends an equal amount of torque to the front and rear differentials, and essentially ties their input shafts together. This is good for slippery off-road situations, as some torque is provided to both axles at all times. However, this system has the drawback that it can’t be driven in four-wheel drive mode at all times. With the front and rear differentials rotating together, any difference in rotational speed between the front and rear wheels — such as from turning a corner or uneven tyre wear — would cause a problem. The drive shaft going to one differential would want to turn further than the other, a problem known as wind-up.

Continue reading “The Difference Between 4WD And AWD”

Web Tool Cranks Up The Power On DJI’s FPV Drone

Apparently, if the GPS on your shiny new DJI FPV Drone detects that it’s not in the United States, it will turn down its transmitter power so as not to run afoul of the more restrictive radio limits elsewhere around the globe. So while all the countries that have put boots on the Moon get to enjoy the full 1,412 mW of power the hardware is capable of, the drone’s software limits everyone else to a paltry 25 mW. As you can imagine, that leads to a considerable performance penalty in terms of range.

But not anymore. A web-based tool called B3YOND promises to reinstate the full power of your DJI FPV Drone no matter where you live by tricking it into believing it’s in the USA. Developed by the team at [D3VL], the unlocking tool uses the new Web Serial API to send the appropriate “FCC Mode” command to the drone’s FPV goggles over USB. Everything is automated, so this hack is available to anyone who’s running a recent version of Chrome or Edge and can click a button a few times.

There’s no source code available yet, though the page does mention they will be putting up a GitHub repository soon. In the meantime, [D3VL] have documented the command packet that needs to be sent to the drone over its MODBUS-like serial protocol for others who might want to roll their own solution. There’s currently an offline Windows-only tool up for download as well, and it sounds like stand-alone versions for Mac and Android are also in the works.

It should probably go without saying that if you need to use this tool, you’ll potentially be violating some laws. In many European countries, 25 mW is the maximum unlicensed transmitter power allowed for UAVs, so that’s certainly something to keep in mind before you flip the switch. Hackaday isn’t in the business of dispensing legal advice, but that said, we wouldn’t want to be caught transmitting at nearly 60 times the legal limit.

Even if you’re not interested in fiddling with drone radios, it’s interesting to see another practical application of the Web Serial API. From impromptu oscilloscopes to communicating with development boards and conference badges, clever developers are already finding ways to make hardware hacking easier with this new capability.

[Thanks to Jules for the tip.]

Boston Dynamics Stretch Robot Trades Lab Coat For Work Uniform

Boston Dynamics has always built robots with agility few others could match. While great for attention-getting demos, from outside the company it hasn’t been clear how they’ll translate acrobatic skills into revenue. Now we’re getting a peek at a plan in an interview with IEEE Spectrum about their new robot Stretch.

Most Boston Dynamics robots have been research projects, too expensive and not designed for mass production. The closest we got to date was Spot, which was offered for sale and picked up a few high profile jobs like inspecting SpaceX test sites. But Spot was still pretty experimental without an explicit application. In contrast, Stretch has a laser-sharp focus made clear by its official product page: this robot will be looking for warehouse jobs. Specifically, Stretch is designed to handle boxes up to 50 lbs (23 kg). Loading and unloading them, to and from pallets, conveyer belts, trucks, or shipping containers. These jobs are repetitive and tedious back-breaking work with a high injury rate, a perfect opportunity for robots.

But warehouse logistics aren’t as tightly structured as factory automation, demanding more adaptability than typical industrial robots can offer. A niche Boston Dynamics learned it can fill after releasing an earlier demo video showing their research robot Atlas moving some boxes around: they started receiving inquiries into how much that would cost. Atlas is not a product, but wheels were set in motion leading to their Handle robot. Learning from what Handle did well (and not well) in a warehouse environment, the designed evolved to today’s Stretch. The ostrich-like Handle prototype is now relegated to further research into wheeled-legged robots and the occasional fun dance video.

The Stretch preproduction prototypes visible in these videos lacks acrobatic flair of its predecessors, but they still have the perception and planning smarts that made those robots possible. Those skills are just being applied to a narrower problem scope. Once production models are on the job, we look forward to reading some work performance reviews.

Continue reading “Boston Dynamics Stretch Robot Trades Lab Coat For Work Uniform”