Laser Brings Autofocus To Tricked-Out Large Format Film Camera

You can’t argue with the results of large-format film cameras — picture the boxy bellows held by a cigar-chomping big-city press photographer of the 1940s — but they don’t really hold a candle to the usability and portability of even the earliest generations of 35mm cameras. And add in the ease-of-use features of later film and digital cameras, and something like a 4×5 Graflex seems like a real dinosaur.

Or maybe not. [Aleksi Koski] has built a large-format camera with autofocus, the “Conflict 45.” The problem with a lot of the large-format film cameras, which tend to be of a non-reflex optical design, is that it’s difficult or even impossible to see what you’re shooting through the lens. This makes focusing a bit of a guessing game, a problem that [Aleksi] addresses with his design. Sadly, the linked Petapixel article is basically devoid of technical details, but from what we can glean from it and the video below, the Conflict 45 is a 4″x5″ sheet-film camera that has a motorized lens board and a laser rangefinder. A short video has a through-viewfinder view showing an LCD overlay, which means there’s some kind of microcontroller on board as well, which is probably used for the calculations needed to compensate for parallax errors during close focusing, as well as other uses.

The camera is built from 3D printed parts; [Aleksi] says that this is just a prototype and that the finished camera will have a carbon-fiber body. We’d love to see more build details, but for now, we just love the idea of an easy-to-use large-format camera. Just maybe not that big.

Continue reading “Laser Brings Autofocus To Tricked-Out Large Format Film Camera”

This Week In Security: Pacman, Hertzbleed, And The Death Of Internet Explorer

There’s not one, but two side-channel attacks to talk about this week. Up first is Pacman, a bypass for ARM’s Pointer Authentication Code. PAC is a protection built into certain ARM Processors, where a cryptographic hash value must be set correctly when pointers are updated. If the hash is not set correctly, the program simply crashes. The idea is that most exploits use pointer manipulation to achieve code execution, and correctly setting the PAC requires an explicit instruction call. The PAC is actually indicated in the unused bits of the pointer itself. The AArch64 architecture uses 64-bit values for addressing, but the address space is much less than 64-bit, usually 53 bits or less. This leaves 11 bits for the PAC value. Keep in mind that the application doesn’t hold the keys and doesn’t calculate this value. 11 bits may not seem like enough to make this secure, but keep in mind that every failed attempt crashes the program, and every application restart regenerate the keys.

What Pacman introduces is an oracle, which is a method to gain insight on data the attacker shouldn’t be able to see. In this case, the oracle works via speculation attacks, very similar to Meltdown and Spectre. The key is to attempt a protected pointer dereference speculatively, and to then observe the change in system state as a result. What you may notice is that this requires an attack to already be running code on the target system, in order to run the PAC oracle technique. Pacman is not a Remote Code Execution flaw, nor is it useful in gaining RCE.

One more important note is that an application has to have PAC support compiled in, in order to benefit from this protection. The platform that has made wide use of PAC is MacOS, as it’s a feature baked in to their M1 processor. The attack chain would likely start with a remote execution bug in an application missing PAC support. Once a foothold is established in uprivileged userspace, Pacman would be used as part of an exploit against the kernel. See the PDF paper for all the details.

Continue reading “This Week In Security: Pacman, Hertzbleed, And The Death Of Internet Explorer”

3D Printer Helps Make A Neat Lyric Video

These days, it’s a lot easier to get attention online if your lovely music comes with some kind of visual accompaniment. Of course, shooting a full-scale music video can be expensive, so lyric videos have become a more affordable, approachable avenue that are growing in popularity. [prash] whipped one up recently with the help of a 3D printer.

The video is a timelapse of a 3D print, something we’re very familiar with around these parts. [prash] embedded words in the various layers of the objects to be printed. Thus, as the prints are laid down on the build plate, the words are revealed to the camera shooting the time lapse. The scene is further improved by shaping the prints to reference the lyrics of the song, and using attractive infill designs like spirals and stripes. There are even some strategically placed clouds and pretty lighting to improve the effect.

It’s a neat use of 3D printing, and an artful one at that. We’re pretty confident that [prash] has put together a highly unique lyric video, and it’s much more impressive than the dodgy 3D printing [Will.i.am] featured in his not-quite-a-Britney song a decade ago. Video after the break.

Continue reading “3D Printer Helps Make A Neat Lyric Video”

72 DIY Musical Instruments Played In 7 Minutes

Humans have been making musical instruments from whatever items are close at hand for thousands of years, and we aren’t showing any signs of slowing down yet, least of all artist [Nicolas Bras] and collaborator [Sandrine Morais.] They have been designing and constructing quite a number of DIY instruments over the years, with this demo video highlighting a whopping 72 of them in the space of just seven minutes!

Clearly, [Nicolas] is one of those people who can play literally anything, and shows his skills off very well indeed if you ask us. Particularly fine sounding is the pilchards tin guitar found at 2:52 in the video, and the electric pipe beat box at 2:10 is also pretty fun.

Pretty much all the usual methods for producing sounds mechanically are covered, namely air resonating within a shaped enclosure (flutes, and such), string vibrations which might be sensed electrically (guitars, zithers, etc) and percussive instruments which vibrate an enclosed air mass (like the udu) or vibrate other things (like plates or bars). Looking over the YouTube channel, we can’t think of much they haven’t tried to make music with!

If all this sounds familiar, well, we covered [Nicolas] that time he was traveling for a gig and his instrument collection got lost in transit.

Continue reading “72 DIY Musical Instruments Played In 7 Minutes”