A Few Reasonable Rules For The Responsible Use Of New Technology

If there’s one thing which probably unites all of Hackaday’s community, it’s a love of technology. We live to hear about the very latest developments before anyone else, and the chances are for a lot of them we’ll all have a pretty good idea how they work. But if there’s something which probably annoys a lot of us the most, it’s when we see a piece of new technology misused. A lot of us are open-source enthusiasts not because we’re averse to commercial profit, but because we’ve seen the effects of monopolistic practices distorting the market with their new technologies and making matters worse, not better. After all, if a new technology isn’t capable of making the world a better place in some way, what use is it?

It’s depressing then to watch the same cycle repeat itself over and over, to see new technologies used in the service of restrictive practices for short-term gain rather than to make better products. We probably all have examples of new high-tech products that are simply bad, that are new technology simply for the sake of marketing, and which ultimately deliver something worse than what came before, but with more bling. Perhaps the worst part is the powerlessness,  watching gullible members of the public lapping up something shiny and new that you know to be flawed, and not being able to do anything about it.

Here at Hackaday though, perhaps there is something I can do about it. I don’t sit in any boardroom that matters but I do have here a soapbox on which to stand, and from it I can talk to you, people whose work takes you into many fascinating corners of the tech industry and elsewhere. If I think that new technologies are being used irresponsibly to create bad products, at least I can codify how that might be changed. So here are my four Rules For The Responsible Use Of New Technology, each with some examples. They should each be self-evident, and I hope you’ll agree with me. Continue reading “A Few Reasonable Rules For The Responsible Use Of New Technology”

render of a sample board produced with help of this plugin. it's pretty, has nice lighting and all!

From KiCad To Blender For A Stunning Render

We love Blender. It brings you 3D modeling, but not in a CAD way — instead, people commonly use it to create animations, movies, games, and even things like VR models. In short, Blender is about all things art and visual expression. Now, what if you want a breathtaking render of your KiCad board? Look no further than the pcb2blender tool from [Bobbe 30350n].

This isn’t the first time we’ve seen KiCad meet Blender. However, compared to the KiCad to Blender paths that people used previously, pcb2blender makes the import process as straightforward and as quick as humanly possible. Install a plugin for both tools, and simply transfer a .pcb3d file out of the KiCad plugin into the Blender plugin. Want to make the surfaces of your design look like they’re meant to look in real life? Use the free2ki plugin to apply materials to your 3D models. In fact, you should check out [30350n]’s Blender plugin collection and overall portfolio, it’s impressive.

There’s no shortage of Blender hacks – just this year we’ve covered a hacker straight up simulating an entire camera inside Blender for the purpose of making renders, and someone else showing how to use Stable Diffusion to texture 3D scenes at lightning speed. We even recently published a comprehensive tutorial on how to animate your robot in Blender ourselves! Want to give it a shot? Check out this quick and simple Red Bull can model design tutorial.

Thanks to [Aki] for sharing this with us!

Gyro-Controlled Labyrinth Game Outputs To VGA

This gesture-controlled labyrinth game using two Raspberry Pi Pico units does a great job of demonstrating how it can sometimes take a lot of work to make something look simple.

To play, one tilts an MPU6050 inertial measurement unit (IMU) attached to one Pico to guide a square through a 2D maze, with the player working through multiple levels of difficulty. A second Pico takes care of displaying the game state on a VGA monitor, and together they work wirelessly to deliver a coherent experience with the right “feel”. This includes low latency, simulating friction appropriately, and more.

Taking a stream of raw sensor readings and turning them into control instructions over UDP in a way that feels intuitive while at the same time generating a VGA display signal has a lot of moving parts, software-wise. The project write-up has a considerable amount of detail on the architecture of the system, and the source code is available on GitHub for those who want a closer look.

We’ve seen gesture controls interfaced to physical marble mazes before, but two Raspberry Pi Picos doing it wirelessly with a VGA monitor for feedback is pretty neat. Watch it in action in the video, embedded just under the page break.

Continue reading “Gyro-Controlled Labyrinth Game Outputs To VGA”