What Actually Causes Warping In 3D Prints?

The 3D printing process is cool, but it’s also really annoying at times. Specifically, when you want to get a part printed, and no matter how you orientate things, what adhesion aids you use or what slicer settings you tweak, it just won’t print right. [David Malawey] has been thinking a little about the problem of the edges of wide prints tending to curl upwards, and we believe they may be on to something.

Obviously, we’re talking about the lowest common denominator of 3D printing, FDM, here. Other 3D printing technologies have their gotchas. Anyway, when printing a wide object, edge curling or warping is a known annoyance. Many people will just try it and hope for the best. When a print’s extreme ends start peeling away from the heat bed, causing the print to collide with the head, they often get ripped off the bed and unceremoniously ejected onto the carpet. Our first thought will be, “Oh, bed adhesion again”, followed by checking the usual suspects: bed temperature, cleanliness and surface preparation. Next, we might add a brim or some sacrificial ‘bunny ears’ to keep those pesky edges nailed down. Sometimes this works, but sometimes not. It can be frustrating. [David] explains in the YouTube short how the contraction of each layer of materials is compounded by its length, and these stresses accumulate as the print layers build. A simple demonstration shows how a stack of stressed sections will want to curl at the ends and roll up inwards.

This mechanism would certainly go some way to explain the way these long prints behave and why our mitigation attempts are sometimes in vain. The long and short of it is to fix the issue at the design stage, to minimize those contraction forces, and reduce the likelihood of edge curling.

Does this sound familiar? We thought we remembered this, too, from years ago. Anyway, the demonstration was good and highlighted the issue well.

Continue reading “What Actually Causes Warping In 3D Prints?”

A RISC-V LISP Compiler…Written In Lisp

Ah, Lisp, the archaic language that just keeps on giving. You either love or hate it, but you’ll never stop it. [David Johnson-Davies] is clearly in the love it camp and, to that end, has produced a fair number of tools wedging this language into all kinds of nooks and crannies. The particular nook in question is the RISC-V ISA, with their Lisp-to-RISC-V compiler. This project leads on from their RISC-V assembler by allowing a Lisp function to be compiled directly to assembly and then deployed as callable, provided you stick to the supported language subset, that is!

The fun thing is—you guessed it—it’s written in Lisp. In fact, both projects are pure Lisp and can be run on the uLisp core and deployed onto your microcontroller of choice. Because who wouldn’t want to compile Lisp on a Lisp machine? To add to the fun, [David] created a previous project targeting ARM, so you’ve got even fewer excuses for not being able to access this. If you’ve managed to get your paws on the new Raspberry Pi Pico-2, then you can take your pick and run Lisp on either core type and still compile to native.

The Lisp-Risc-V project can be found in this GitHub repo, with the other tools easy enough to locate.

We see a fair few Lisp projects on these pages. Here’s another bare metal Lisp implementation using AVR. And how many lines of code does it take to implement Lisp anyway? The answer is 42 200 lines of C, to be exact.

New Study Looks At The Potential Carcinogenicity Of 3D Printing

We’ve all heard stories of the dangers of 3D printing, with fires from runaway hot ends or dodgy heated build plates being the main hazards. But what about the particulates? Can they actually cause health problems in the long run? Maybe, if new research into the carcinogenicity of common 3D printing plastics pans out.

According to authors [CheolHong Lim] and [ and that PLA was less likely to be hazardous than ABS. The study was designed to assess the potential carcinogenicity of both ABS and PLA particulates under conditions similar to what could be expected in an educational setting.

To do this, they generated particulates by heating ABS and PLA to extruder temperatures, collected and characterized them electrostatically, and dissolved them in the solvent DMSO. They used a cell line known as Balb/c, derived from fibroblasts of an albino laboratory mouse, to assess the cytotoxic concentration of each plastic, then conducted a comet assay, which uses cell shape as a proxy for DNA damage; damaged cells often take on a characteristically tailed shape that resembles a comet. This showed no significant DNA damage for either plastic.

But just because a substance doesn’t cause DNA damage doesn’t mean it can’t mess with the cell’s working in other ways. To assess this, they performed a series of cell transformation assays, which look for morphological changes as a result of treatment with a potential carcinogen. Neither ABS nor PLA were found to be carcinogenic in this assay. They also looked at the RNA of the treated cells, to assess the expression of genes related to carcinogenic pathways. They found that of 147 cancer-related genes, 113 were either turned up or turned down relative to controls. Finally, they looked at glucose metabolism as a proxy for the metabolic changes a malignant cell generally experiences, finding that both plastics increased metabolism in vitro.

Does this mean that 3D printing causes cancer? No, not by a long shot. But, it’s clear that under lab conditions, exposure to either PLA or ABS particulates seems to be related to some of the cell changes associated with carcinogenesis. What exactly this means in the real world remains to be seen, but the work described here at least sets the stage for further examination.

What does this all mean to the home gamer? For now, maybe you should at least crack a window while you’re printing.

The Greengate DS:3 Part 2: Putting A Retro Sampler To Use

The Greengate DS:3 had been re-created in the form of the Goodgreat. Now [Bea Thurman] had to put it to useIf the Greengate DS:3 card was rare,  the keyboard was nearly impossible to find. After a long search, [Bea] bought one all the way from Iceland.  The card of course came courtesy of [Eric]. 

It was time to connect the two together.  But there was a problem — a big problem. The GreenGate has a DB-25 connected via a ribbon cable to the board’s 2×10 connector. The keyboard that shipped with those cards would plug right in.  Unfortunately, [Bea’s] keyboard had a DIP-40 IDC connector crimped on its ribbon cable.  What’s more the connectors for the sustain and volume pedals were marked, but never drilled out. The GreenGate silk screen was still there though. 

Maybe it was a prototype or some sort of modified hardware. Either way, the 40-pin DIP connector had to go if the keyboard ever were to work with the card. What followed were a few hours of careful wire tracing 

Continue reading “The Greengate DS:3 Part 2: Putting A Retro Sampler To Use”

Solving A Retrocomputing Mystery With An Album Cover: Greengate DS:3

[Bea Thurman] had a retro music conundrum. She loved the classic Greengate DS:3 sampler, but couldn’t buy one, and couldn’t find enough information to build her own. [Bea’s] plea for help caught the attention of [Eric Schlaepfer], aka  [TubeTime]. The collaboration that followed ultimately solved a decades-old mystery. 

In the 1980s, there were two types of musicians: Those who could afford a Fairlight CMI and everyone else. If you were an Apple II owner, the solution was a Greengate DS:3. The DS:3 was a music keyboard and a sampler card for the Apple II+ (or better). The plug-in card was a bit mysterious, though. The cards were not very well documented, and only a few survive today. To make matters worse, some chips had part numbers sanded off. It was a bit of a mystery until [Bea and Tubetime] got involved. 

Continue reading “Solving A Retrocomputing Mystery With An Album Cover: Greengate DS:3”

Calculating The True Per Part Cost For Injection Molding Vs 3D Printing

At what point does it make sense to 3D print a part compared to opting for injection molding? The short answer is “it depends.” The medium-sized answer is, “it depends on some back-of-the-envelope calculations specific to your project.” That is what [Slant 3D} proposes in a recent video that you can view below.  The executive summary is that injection molding is great for when you want to churn out lots of the same parts, but you have to amortize the mold(s), cover shipping and storage, and find a way to deal with unsold inventory. In a hypothetical scenario in the video, a simple plastic widget may appear to cost just 10 cents vs 70 cents for the 3D printed part, but with all intermediate steps added in, the injection molded widget is suddenly over twice as expensive.

In the even longer answer to the question, you would have to account for the flexibility of the 3D printing pipeline, as it can be used on-demand and in print farms across the globe, which opens up the possibility of reducing shipping and storage costs to almost nothing. On the other hand, once you have enough demand for an item (e.g., millions of copies), it becomes potentially significantly cheaper than 3D printing again. Ultimately, it really depends on what the customer’s needs are, what kind of volumes they are looking at, the type of product, and a thousand other questions.

For low-volume prototyping and production, 3D printing is generally the winner, but at what point in ramping up production does switching to an injection molded plastic part start making sense? This does obviously not even account for the physical differences between IM and FDM (or SLA) printed parts, which may also have repercussions when switching. Clearly, this is not a question you want to flunk when it concerns a business that you are running. And of course, you should bear in mind that these numbers are put forth by a 3D printing company, so at the scale where molding becomes a reasonabe option, you’ll also want to do your own research.

While people make entire careers out of injection molding, you can do it yourself in small batches. You can even use your 3D printer in the process. If you try injection molding on your own, or with a professional service, be sure to do your homework and learn what you can to avoid making costly mistakes.

Continue reading “Calculating The True Per Part Cost For Injection Molding Vs 3D Printing”

The Biological Motors That Power Our Bodies

Most of us will probably be able to recall at least vaguely that a molecule called ATP is essential for making our bodies move, but this molecule is only a small part of a much larger system. Although we usually aren’t aware of it, our bodies consist of a massive collection of biological motors and related structures, which enable our muscles to contract, nutrients and fluids to move around, and our cells to divide and prosper. Within the biochemical soup that makes up single- and multi-cellular lifeforms, it are these mechanisms that turn a gooey soup into something that can do much more than just gently slosh around in primordial puddles.

There are many similarities between a single-cell organism like a bacteria and eukaryotic multi-cellular organisms like us humans, but the transition to the latter requires significantly more complicated structures. An example for this are cilia, which together with motor proteins like myosin and kinesin form the foundations of our body’s basic functioning. Quite literally supporting all this is the cytoskeleton, which is a feature that our eukaryotic cells have in common with bacteria and archaea, except that eukaryotic cytoskeletons are significantly more complex.

Continue reading “The Biological Motors That Power Our Bodies”